
Jonathan R Wolpaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7566368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain–computer interfaces for communication and control. Clinical Neurophysiology, 2002, 113, 767-791.	1.5	6,747
2	BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Transactions on Biomedical Engineering, 2004, 51, 1034-1043.	4.2	2,248
3	Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 2000, 8, 164-173.	1.4	1,703
4	Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17849-17854.	7.1	1,262
5	A brain–computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 2004, 1, 63-71.	3.5	1,066
6	An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 1991, 78, 252-259.	0.3	961
7	Brain–computer interfaces in neurological rehabilitation. Lancet Neurology, The, 2008, 7, 1032-1043.	10.2	954
8	The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 153-159.	4.9	832
9	Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 1997, 103, 386-394.	0.3	788
10	Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topography, 2000, 12, 177-186.	1.8	686
11	Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 2008, 167, 15-21.	2.5	683
12	A comparison of classification techniques for the P300 Speller. Journal of Neural Engineering, 2006, 3, 299-305.	3.5	674
13	EMG contamination of EEG: spectral and topographical characteristics. Clinical Neurophysiology, 2003, 114, 1580-1593.	1.5	606
14	A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology, 2008, 119, 1909-1916.	1.5	559
15	The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials. IEEE Transactions on Biomedical Engineering, 2004, 51, 1044-1051.	4.2	535
16	Brain–computer communication: Unlocking the locked in Psychological Bulletin, 2001, 127, 358-375.	6.1	531
17	Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 2005, 64, 1775-1777.	1.1	530
18	A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 2010, 121, 1109-1120.	1.5	515

#	Article	IF	CITATIONS
19	Brain-Computer Interfaces in Medicine. Mayo Clinic Proceedings, 2012, 87, 268-279.	3.0	515
20	A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 2006, 73, 242-252.	2.2	510
21	Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. Journal of Neural Engineering, 2007, 4, 264-275.	3.5	456
22	A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 449-455.	2.1	443
23	Two-dimensional movement control using electrocorticographic signals in humans. Journal of Neural Engineering, 2008, 5, 75-84.	3.5	442
24	Activity-Dependent Spinal Cord Plasticity in Health and Disease. Annual Review of Neuroscience, 2001, 24, 807-843.	10.7	391
25	Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Reviews in Biomedical Engineering, 2009, 2, 187-199.	18.0	386
26	Multichannel EEG-based brain-computer communication. Electroencephalography and Clinical Neurophysiology, 1994, 90, 444-449.	0.3	382
27	Electroencephalographic (EEG) control of three-dimensional movement. Journal of Neural Engineering, 2010, 7, 036007.	3.5	351
28	Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12, 331-338.	4.9	336
29	Brain-computer interface research at the Wadsworth Center. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 2000, 8, 222-226.	1.4	334
30	Brain–computer interface systems: progress and prospects. Expert Review of Medical Devices, 2007, 4, 463-474.	2.8	328
31	EEG-based communication: improved accuracy by response verification. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 1998, 6, 326-333.	1.4	327
32	Brain-computer interfaces for communication and control. Communications of the ACM, 2011, 54, 60-66.	4.5	323
33	The wadsworth BCI research and development program: at home with BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 229-233.	4.9	294
34	Towards an independent brain–computer interface using steady state visual evoked potentials. Clinical Neurophysiology, 2008, 119, 399-408.	1.5	294
35	A temporal component of the auditory evoked response. Electroencephalography and Clinical Neurophysiology, 1975, 39, 609-620.	0.3	276
36	Brain-computer interfaces as new brain output pathways. Journal of Physiology, 2007, 579, 613-619.	2.9	271

3

#	Article	IF	CITATIONS
37	Four ethical priorities for neurotechnologies and Al. Nature, 2017, 551, 159-163.	27.8	267
38	Does the â€~P300' speller depend on eye gaze?. Journal of Neural Engineering, 2010, 7, 056013.	3.5	255
39	Decoding flexion of individual fingers using electrocorticographic signals in humans. Journal of Neural Engineering, 2009, 6, 066001.	3.5	247
40	Scalp distribution of human auditory evoked potentials. II. Evidence for overlapping sources and involvement of auditory cortex. Electroencephalography and Clinical Neurophysiology, 1982, 54, 25-38.	0.3	225
41	EEG-based communication: presence of an error potential. Clinical Neurophysiology, 2000, 111, 2138-2144.	1.5	219
42	Brain–computer interface (BCI) operation: optimizing information transfer rates. Biological Psychology, 2003, 63, 237-251.	2.2	196
43	The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11, 1-4.	4.9	182
44	Emulation of computer mouse control with a noninvasive brain–computer interface. Journal of Neural Engineering, 2008, 5, 101-110.	3.5	181
45	EEG-based brain–computer interfaces. Current Opinion in Biomedical Engineering, 2017, 4, 194-200.	3.4	175
46	The complex structure of a simple memory. Trends in Neurosciences, 1997, 20, 588-594.	8.6	170
47	Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neurolmage, 2011, 54, 2960-2972.	4.2	170
48	Sensorimotor rhythm-based brain–computer interface (BCI): model order selection for autoregressive spectral analysis. Journal of Neural Engineering, 2008, 5, 155-162.	3.5	164
49	Brain-Computer Interface Operation of Robotic and Prosthetic Devices. Computer, 2008, 41, 52-56.	1.1	155
50	What do reflex and voluntary mean? Modern views on an ancient debate. Experimental Brain Research, 2000, 130, 417-432.	1.5	151
51	Operant conditioning of primate spinal reflexes: the H-reflex. Journal of Neurophysiology, 1987, 57, 443-459.	1.8	149
52	Adaptive plasticity in primate spinal stretch reflex: initial development. Journal of Neurophysiology, 1983, 50, 1296-1311.	1.8	147
53	Design and operation of an EEG-based brain-computer interface with digital signal processing technology. Behavior Research Methods, 1997, 29, 337-345.	1.3	147
54	Toward a high-throughput auditory P300-based brain–computer interface. Clinical Neurophysiology, 2009, 120, 1252-1261.	1.5	147

#	Article	IF	CITATIONS
55	Memory traces in primate spinal cord produced by operant conditioning of H-reflex. Journal of Neurophysiology, 1989, 61, 563-572.	1.8	145
56	Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiologica, 2007, 189, 155-169.	3.8	139
57	Brain-computer interface (BCI) operation: signal and noise during early training sessions. Clinical Neurophysiology, 2005, 116, 56-62.	1.5	128
58	Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. Journal of Neurophysiology, 1994, 72, 431-442.	1.8	127
59	Operant Conditioning of a Spinal Reflex Can Improve Locomotion after Spinal Cord Injury in Humans. Journal of Neuroscience, 2013, 33, 2365-2375.	3.6	125
60	EEG-based communication: prospects and problems. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 1996, 4, 425-430.	1.4	124
61	P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clinical Neurophysiology, 2015, 126, 2124-2131.	1.5	124
62	Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13, 372-379.	4.9	120
63	Operant conditioning of H-reflex in freely moving rats. Journal of Neurophysiology, 1995, 73, 411-415.	1.8	118
64	Acquisition of a Simple Motor Skill: Task-Dependent Adaptation Plus Long-Term Change in the Human Soleus H-Reflex. Journal of Neuroscience, 2009, 29, 5784-5792.	3.6	113
65	What Can the Spinal Cord Teach Us about Learning and Memory?. Neuroscientist, 2010, 16, 532-549.	3.5	110
66	Memory traces in spinal cord. Trends in Neurosciences, 1990, 13, 137-142.	8.6	107
67	Independent home use of a brain-computer interface by people with amyotrophic lateral sclerosis. Neurology, 2018, 91, e258-e267.	1.1	105
68	Operant Conditioning of H-Reflex Can Correct a Locomotor Abnormality after Spinal Cord Injury in Rats. Journal of Neuroscience, 2006, 26, 12537-12543.	3.6	103
69	Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 207-215.	1.7	100
70	Brain–Computer Interfaces: Something New under the Sun. , 2012, , 3-12.		99
71	EEG-based communication and control: short-term role of feedback. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 1998, 6, 7-11.	1.4	98
72	The P300-based brain–computer interface (BCI): Effects of stimulus rate. Clinical Neurophysiology, 2011, 122, 731-737.	1.5	98

#	Article	IF	CITATIONS
73	BCI meeting 2005-workshop on signals and recording methods. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14, 138-141.	4.9	97
74	Operant conditioning of spinal reflexes: from basic science to clinical therapy. Frontiers in Integrative Neuroscience, 2014, 8, 25.	2.1	95
75	Brain–computer interfaces (BCIs): Detection instead of classification. Journal of Neuroscience Methods, 2008, 167, 51-62.	2.5	94
76	Human middle-latency auditory evoked potentials: vertex and temporal components. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1990, 77, 6-18.	2.0	87
77	Probable Corticospinal Tract Control of Spinal Cord Plasticity in the Rat. Journal of Neurophysiology, 2002, 87, 645-652.	1.8	87
78	Operantly conditioned motoneuron plasticity: possible role of sodium channels. Journal of Neurophysiology, 1995, 73, 867-871.	1.8	85
79	Real-time detection of event-related brain activity. NeuroImage, 2008, 43, 245-249.	4.2	85
80	Operant Conditioning of H-Reflex in Spinal Cord-Injured Rats. Journal of Neurotrauma, 1996, 13, 755-766.	3.4	84
81	EEG correlates of P300-based brain–computer interface (BCI) performance in people with amyotrophic lateral sclerosis. Journal of Neural Engineering, 2012, 9, 026014.	3.5	82
82	Brain–Computer Interfaces. , 2013, , 87-151.		78
83	Scalp distribution of human auditory evoked potentials. I. Evaluation of reference electrode sites. Electroencephalography and Clinical Neurophysiology, 1982, 54, 15-24.	0.3	77
84	Answering questions with an electroencephalogram-based brain-computer interface. Archives of Physical Medicine and Rehabilitation, 1998, 79, 1029-1033.	0.9	77
85	Hemispheric differences in the auditory evoked response. Electroencephalography and Clinical Neurophysiology, 1977, 43, 99-102.	0.3	72
86	Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Experimental Brain Research, 2002, 144, 88-94.	1.5	72
87	Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 9206-9211.	7.1	71
88	An EEG-based method for graded cursor control. Cognitive, Affective and Behavioral Neuroscience, 1993, 21, 77-81.	1.3	71
89	Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process. Journal of Neuroscience, 1984, 4, 2718-2724.	3.6	69
90	Brain–computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms. Progress in Brain Research, 2006, 159, 411-419.	1.4	69

#	Article	IF	CITATIONS
91	Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans. Neuroscience Letters, 2003, 345, 89-92.	2.1	68
92	Recommendations for Responsible Development and Application of Neurotechnologies. Neuroethics, 2021, 14, 365-386.	2.8	67
93	Adaptive plasticity in the primate spinal stretch reflex: reversal and re-development. Brain Research, 1983, 278, 299-304.	2.2	66
94	Motoneuron properties after operantly conditioned increase in primate H-reflex. Journal of Neurophysiology, 1995, 73, 1365-1373.	1.8	65
95	Motor learning changes GABAergic terminals on spinal motoneurons in normal rats. European Journal of Neuroscience, 2006, 23, 141-150.	2.6	64
96	Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based brain–computer interface. Brain Research Bulletin, 2012, 87, 130-134.	3.0	63
97	Therapeutic neural effects of electrical stimulation. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 1996, 4, 218-230.	1.4	61
98	Operant conditioning of rat H-reflex affects motoneuron axonal conduction velocity. Experimental Brain Research, 2001, 136, 269-273.	1.5	61
99	A \$mu \$-Rhythm Matched Filter for Continuous Control of a Brain-Computer Interface. IEEE Transactions on Biomedical Engineering, 2007, 54, 273-280.	4.2	61
100	Brain–computer interfaces. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 110, 67-74.	1.8	60
101	Emerging concepts in the pathophysiology of recovery from neonatal brachial plexus injury. Neurology, 2000, 55, 5-6.	1.1	59
102	The Interaction of a New Motor Skill and an Old One: H-Reflex Conditioning and Locomotion in Rats. Journal of Neuroscience, 2005, 25, 6898-6906.	3.6	59
103	An Evaluation of Autoregressive Spectral Estimation Model Order for Brain-Computer Interface Applications. , 2006, 2006, 1323-6.		59
104	Plasticity from muscle to brain. Progress in Neurobiology, 2006, 78, 233-263.	5.7	59
105	Dorsal Column But Not Lateral Column Transection Prevents Down-Conditioning of H Reflex in Rats. Journal of Neurophysiology, 1997, 78, 1730-1734.	1.8	58
106	EEG-based communication and control: speed-accuracy relationships. Applied Psychophysiology Biofeedback, 2003, 28, 217-231.	1.7	58
107	A practical, intuitive brain–computer interface for communicating â€~yes' or â€~no' by listening. Journal Neural Engineering, 2014, 11, 035003.	of 3.5	56
108	The cerebellum in maintenance of a motor skill: A hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learning and Memory, 2006, 13, 208-215.	1.3	55

#	Article	IF	CITATIONS
109	Operant conditioning of the primate H-reflex: factors affecting the magnitude of change. Experimental Brain Research, 1993, 97, 31-9.	1.5	54
110	Jendrassik maneuver facilitates soleus H-reflex without change in average soleus motoneuron pool membrane potential. Experimental Neurology, 1988, 101, 288-302.	4.1	53
111	Should the parameters of a BCI translation algorithm be continually adapted?. Journal of Neuroscience Methods, 2011, 199, 103-107.	2.5	53
112	Timing of EEG-Based Cursor Control. Journal of Clinical Neurophysiology, 1997, 14, 529-538.	1.7	51
113	Short-Term and Medium-Term Effects of Spinal Cord Tract Transections on Soleus H-Reflex in Freely Moving Rats. Journal of Neurotrauma, 2001, 18, 313-327.	3.4	50
114	Correlations between task-related activity and responses to perturbation in primate sensorimotor cortex. Journal of Neurophysiology, 1980, 44, 1122-1138.	1.8	49
115	Chapter 64 Brain-computer interfaces (BCIs) for communication and control: a mini-review. Supplements To Clinical Neurophysiology, 2004, 57, 607-613.	2.1	49
116	H-Reflex Operant Conditioning in Mice. Journal of Neurophysiology, 2006, 96, 1718-1727.	1.8	48
117	Brain-computer interfaces: Definitions and principles. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 15-23.	1.8	48
118	Plastic changes in the human H-reflex pathway at rest following skillful cycling training. Clinical Neurophysiology, 2006, 117, 1682-1691.	1.5	46
119	A scanning protocol for a sensorimotor rhythm-based brain–computer interface. Biological Psychology, 2009, 80, 169-175.	2.2	46
120	Restoring Walking after Spinal Cord Injury. Neuroscientist, 2015, 21, 203-215.	3.5	46
121	Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats. Learning and Memory, 2005, 12, 248-254.	1.3	45
122	Trained modulation of sensorimotor rhythms can affect reaction time. Clinical Neurophysiology, 2011, 122, 1820-1826.	1.5	44
123	The negotiated equilibrium model of spinal cord function. Journal of Physiology, 2018, 596, 3469-3491.	2.9	43
124	Triceps surae motoneuron morphology in the rat: A quantitative light microscopic study. Journal of Comparative Neurology, 1994, 343, 143-157.	1.6	42
125	Sensorimotor Cortex Ablation Prevents H-Reflex Up-Conditioning and Causes a Paradoxical Response to Down-Conditioning in Rats. Journal of Neurophysiology, 2006, 96, 119-127.	1.8	41
126	Operant conditioning of H-reflex in freely moving monkeys. Journal of Neuroscience Methods, 1990, 31, 145-152.	2.5	40

#	Article	IF	CITATIONS
127	Recovery of Electromyographic Activity After Transection and Surgical Repair of the Rat Sciatic Nerve. Journal of Neurophysiology, 2007, 97, 1127-1134.	1.8	40
128	Adaptive Laplacian filtering for sensorimotor rhythm-based brain–computer interfaces. Journal of Neural Engineering, 2013, 10, 016002.	3.5	40
129	Effects of ethanol, caffeine, and placebo on the auditory evoked response. Electroencephalography and Clinical Neurophysiology, 1978, 44, 568-574.	0.3	39
130	Brain-computer interfaces (BCIs) for communication and control. , 2007, , .		39
131	Diurnal rhythm in the spinal stretch reflex. Brain Research, 1982, 244, 365-369.	2.2	38
132	Adaptive plasticity in primate spinal stretch reflex: behavior of synergist and antagonist muscles. Journal of Neurophysiology, 1983, 50, 1312-1319.	1.8	37
133	Circadian rhythm in rat H-reflex. Brain Research, 1994, 648, 167-170.	2.2	37
134	An In Vitro Protocol for Recording From Spinal Motoneurons of Adult Rats. Journal of Neurophysiology, 2008, 100, 474-481.	1.8	37
135	EEG-Based Communication: Evaluation of Alternative Signal Prediction Methods - EEG-basierte Kommunikation: Evaluierung alternativer Methoden zur SignalprÄ e iktion. Biomedizinische Technik, 1997, 42, 226-233.	0.8	35
136	Brain–Computer Interface Research Comes of Age: Traditional Assumptions Meet Emerging Realities. Journal of Motor Behavior, 2010, 42, 351-353.	0.9	35
137	Operant Conditioning of Rat Soleus H-Reflex Oppositely Affects Another H-Reflex and Changes Locomotor Kinematics. Journal of Neuroscience, 2011, 31, 11370-11375.	3.6	35
138	Brain-computer interfaces. , 2012, , .		35
139	Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. Journal of Neural Engineering, 2018, 15, 056026.	3.5	35
140	Adaptive plasticity in primate spinal stretch reflex: persistence. Journal of Neurophysiology, 1986, 55, 272-279.	1.8	34
141	Operant Conditioning of Reciprocal Inhibition in Rat Soleus Muscle. Journal of Neurophysiology, 2006, 96, 2144-2150.	1.8	34
142	The education and re-education of the spinal cord. Progress in Brain Research, 2006, 157, 261-399.	1.4	34
143	Harnessing neuroplasticity for clinical applications. Brain, 2012, 135, e215-e215.	7.6	34
144	Targeted neuroplasticity for rehabilitation. Progress in Brain Research, 2015, 218, 157-172.	1.4	34

9

#	Article	IF	CITATIONS
145	Chronic exposure of primates to 60-Hz electric and magnetic fields: II. Neurochemical effects. Bioelectromagnetics, 1989, 10, 289-301.	1.6	33
146	Time course of H-reflex conditioning in the rat. Neuroscience Letters, 2001, 302, 85-88.	2.1	33
147	Effects of training pre-movement sensorimotor rhythms on behavioral performance. Journal of Neural Engineering, 2015, 12, 066021.	3.5	33
148	Brain–computer interface use is a skill that user and system acquire together. PLoS Biology, 2018, 16, e2006719.	5.6	33
149	Adaptive plasticity in the spinal stretch reflex: An accessible substrate of memory?. Cellular and Molecular Neurobiology, 1985, 5, 147-165.	3.3	32
150	EEG-based communication: analysis of concurrent EMG activity. Electroencephalography and Clinical Neurophysiology, 1998, 107, 428-433.	0.3	32
151	An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data. Journal of Neural Engineering, 2019, 16, 056031.	3.5	31
152	Hâ€reflex conditioning during locomotion in people with spinal cord injury. Journal of Physiology, 2021, 599, 2453-2469.	2.9	31
153	Operant Conditioning of H-Reflex Increase in Spinal Cord–Injured Rats. Journal of Neurotrauma, 1999, 16, 175-186.	3.4	30
154	Brain–computer interfaces for communication and control. , 0, , 602-614.		30
155	Prediction of subjective ratings of emotional pictures by EEG features. Journal of Neural Engineering, 2017, 14, 016009.	3.5	29
156	Late auditory evoked potentials can occur without brain stem potentials. Electroencephalography and Clinical Neurophysiology, 1983, 56, 304-308.	0.3	28
157	Conditioned H-Reflex Increase Persists After Transection of the Main Corticospinal Tract in Rats. Journal of Neurophysiology, 2003, 90, 3572-3578.	1.8	28
158	H-Reflex Up-Conditioning Encourages Recovery of EMG Activity and H-Reflexes after Sciatic Nerve Transection and Repair in Rats. Journal of Neuroscience, 2010, 30, 16128-16136.	3.6	27
159	The Simplest Motor Skill. Exercise and Sport Sciences Reviews, 2014, 42, 82-90.	3.0	27
160	Operant conditioning of primate triceps surae H-reflex produces reflex asymmetry. Experimental Brain Research, 1989, 75, 35-9.	1.5	25
161	Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex. Biosensors and Bioelectronics, 2020, 165, 112404.	10.1	25
162	Adaptive plasticity in the spinal stretch reflex. Brain Research, 1983, 267, 196-200.	2.2	24

#	Article	IF	CITATIONS
163	Operant conditioning of primate H-reflex: phases of development. Neuroscience Letters, 1994, 170, 203-207.	2.1	24
164	Sag During Unfused Tetanic Contractions in Rat Triceps Surae Motor Units. Journal of Neurophysiology, 1999, 81, 2647-2661.	1.8	24
165	Brain–Computer Interfaces for the Operation of Robotic and Prosthetic Devices. Advances in Computers, 2010, 79, 169-187.	1.6	24
166	Soleus Hâ€reflex operant conditioning changes the Hâ€reflex recruitment curve. Muscle and Nerve, 2013, 47, 539-544.	2.2	24
167	Operant conditioning of rat H-reflex: effects on mean latency and duration. Experimental Brain Research, 2001, 136, 274-279.	1.5	23
168	Treadmill training after spinal cord injury: Good but not better. Neurology, 2006, 66, 466-467.	1.1	23
169	Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. Journal of Neurophysiology, 2014, 112, 1439-1446.	1.8	23
170	Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury. Journal of Neurophysiology, 2014, 111, 1249-1258.	1.8	23
171	Diurnal rhythms in primate spinal reflexes and accompanying cortical somatosensory evoked potentials. Electroencephalography and Clinical Neurophysiology, 1989, 72, 69-80.	0.3	22
172	H-reflex down-conditioning greatly increases the number of identifiable GABAergic interneurons in rat ventral horn. Neuroscience Letters, 2009, 452, 124-129.	2.1	22
173	A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain–computer interface. Journal of Neural Engineering, 2010, 7, 016003.	3.5	22
174	Hâ€reflex modulation in the human medial and lateral gastrocnemii during standing and walking. Muscle and Nerve, 2012, 45, 116-125.	2.2	22
175	Corticospinal Tract Transection Permanently Abolishes H-Reflex Down-Conditioning in Rats. Journal of Neurotrauma, 2006, 23, 1705-1712.	3.4	21
176	Chapter 11 Brain–Computer Interface Research at the Wadsworth Center. International Review of Neurobiology, 2009, 86, 147-157.	2.0	21
177	Chronic exposure of primates to 60-Hz electric and magnetic fields: III. Neurophysiologic effects. Bioelectromagnetics, 1989, 10, 303-317.	1.6	20
178	Reversal of H-reflex operant conditioning in the rat. Experimental Brain Research, 1996, 112, 58-62.	1.5	20
179	Operantly Conditioned Plasticity in Spinal Cord. Annals of the New York Academy of Sciences, 1991, 627, 338-348.	3.8	19
180	Treadmill training after spinal cord injury: Good but not better. Neurology, 2006, 67, 1900-1902.	1.1	19

#	Article	IF	CITATIONS
181	Effects of Hâ€reflex upâ€conditioning on GABAergic terminals on rat soleus motoneurons. European Journal of Neuroscience, 2008, 28, 668-674.	2.6	19
182	Special issue containing contributions from the Fourth International Brain–Computer Interface Meeting. Journal of Neural Engineering, 2011, 8, 020201.	3.5	18
183	Tongue Necrosis Attributed to Ergotamine in Temporal Arteritis. JAMA - Journal of the American Medical Association, 1973, 225, 514.	7.4	17
184	Adaptive plasticity and diurnal rhythm in the primate spinal stretch reflex are independent phenomena. Brain Research, 1984, 300, 385-391.	2.2	17
185	Corticospinal tract transection reduces H-reflex circadian rhythm in rats. Brain Research, 2002, 942, 101-108.	2.2	17
186	Diurnal H-reflex variation in mice. Experimental Brain Research, 2006, 168, 517-528.	1.5	17
187	Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats. American Journal of Physiology - Renal Physiology, 2014, 307, F485-F497.	2.7	17
188	Papers from the Fifth International Brain–Computer Interface Meeting. Journal of Neural Engineering, 2014, 11, 030301.	3.5	17
189	Adaptive plasticity in spinal cord. Advances in Neurology, 1993, 59, 163-74.	0.8	17
190	Memory traces in spinal cord produced by H-reflex conditioning: Effects of post-tetanic potentiation. Neuroscience Letters, 1989, 103, 113-119.	2.1	16
191	Synaptic terminal coverage of primate triceps surae motoneurons. Journal of Comparative Neurology, 1994, 345, 345-358.	1.6	16
192	T complex hemispheric asymmetries: Effects of stimulus intensity. Hearing Research, 1988, 34, 225-232.	2.0	15
193	Retrograde transport of the lectin Phaseolus vulgaris leucoagglutinin (PHA-L) by rat spinal motoneurons. Neuroscience Letters, 1988, 86, 133-138.	2.1	15
194	Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats. Journal of Neurophysiology, 2014, 112, 2374-2381.	1.8	15
195	Motor unit properties after operant conditioning of rat H-reflex. Experimental Brain Research, 2001, 140, 382-386.	1.5	14
196	Reflex conditioning: a new strategy for improving motor function after spinal cord injury. Annals of the New York Academy of Sciences, 2010, 1198, E12-21.	3.8	14
197	Cortical stimulation causes long-term changes in H-reflexes and spinal motoneuron GABA receptors. Journal of Neurophysiology, 2012, 108, 2668-2678.	1.8	14
198	Acquisition, maintenance, and therapeutic use of a simple motor skill. Current Opinion in Behavioral Sciences, 2018, 20, 138-144.	3.9	14

#	Article	IF	CITATIONS
199	Memory in Neuroscience: Rhetoric Versus Reality. Behavioral and Cognitive Neuroscience Reviews, 2002, 1, 130-163.	3.9	13
200	Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors. Journal of Neuroscience, 2017, 37, 8198-8206.	3.6	13
201	Chronic exposure of primates to 60-Hz electric and magnetic fields: I. exposure system and measurements of general health and performance. Bioelectromagnetics, 1989, 10, 277-288.	1.6	12
202	Long-term spinal reflex studies in awake behaving mice. Journal of Neuroscience Methods, 2005, 149, 134-143.	2.5	12
203	Modulation in spinal circuits and corticospinal connections following nerve stimulation and operant conditioning. , 2006, 2006, 2138-41.		12
204	Acute and Chronic Antiepileptic Drug Effect on the T Complex Interhemispheric Latency Difference. Epilepsia, 1978, 19, 99-107.	5.1	11
205	Contribution of the external urethral sphincter to urinary void size in unanesthetized unrestrained rats. Neurourology and Urodynamics, 2016, 35, 696-702.	1.5	11
206	Single unit activity vs. amplitude of the epidural evoked potential in primary auditory cortex of awake cats. Electroencephalography and Clinical Neurophysiology, 1979, 47, 372-376.	0.3	10
207	Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics, 2018, 15, 669-683.	4.4	10
208	Spinal Cord Plasticity in the Acquisition of a Simple Motor Skill. , 2001, , 101-125.		10
209	Circadian rhythm in rat H-reflex. Brain Research, 1994, 648, 167-70.	2.2	10
210	Heksor: the central nervous system substrate of an adaptive behaviour. Journal of Physiology, 2022, 600, 3423-3452.	2.9	10
211	Motoneuron response to dorsal root stimulation in anesthetized monkeys after spinal cord transection. Experimental Brain Research, 1987, 68, 428-33.	1.5	9
212	Conduction velocity is inversely related to action potential threshold in rat motoneuron axons. Experimental Brain Research, 2003, 150, 497-505.	1.5	9
213	Brain Signals for Brain–Computer Interfaces. The Frontiers Collection, 2009, , 29-46.	0.2	9
214	Spinal Transection Alters External Urethral Sphincter Activity during Spontaneous Voiding in Freely Moving Rats. Journal of Neurotrauma, 2017, 34, 3012-3026.	3.4	9
215	Spinal and Supraspinal Effects of Long-Term Stimulation of Sensorimotor Cortex in Rats. Journal of Neurophysiology, 2007, 98, 878-887.	1.8	8
216	The inferior olive is essential for long-term maintenance of a simple motor skill. Journal of Neurophysiology, 2016, 116, 1946-1955.	1.8	8

#	Article	IF	CITATIONS
217	Electromagnetic muscle stretch strongly excites sensorimotor cortex neurons in behaving primates. Science, 1979, 203, 465-467.	12.6	7
218	Reduced day-to-day variation accompanies adaptive plasticity in the primate spinal stretch reflex. Neuroscience Letters, 1985, 54, 165-171.	2.1	7
219	Spinal stretch reflex and cortical evoked potential amplitudes versus muscle stretch amplitude in the monkey arm. Electroencephalography and Clinical Neurophysiology, 1988, 69, 394-397.	0.3	7
220	Operant conditioning of primate spinal reflexes: effect on cortical SEPs. Electroencephalography and Clinical Neurophysiology, 1988, 69, 398-401.	0.3	7
221	Constancy of motor axon conduction time during growth in rats. Experimental Brain Research, 1992, 90, 343-5.	1.5	7
222	BCIs in the Laboratory and at Home: The Wadsworth Research Program. The Frontiers Collection, 2009, , 97-111.	0.2	7
223	Electromagnetic stretch of individual muscles in behaving primates. Brain Research, 1978, 141, 193-196.	2.2	6
224	Gyral impressions in the skull as a guide to cortical topography in chronic transdural unit recording. Brain Research, 1979, 160, 505-508.	2.2	6
225	The influence of stimulus intensity, contralateral masking and handedness on the temporal N1 and the T complex components of the auditory N1 wave, by John F. Connolly. Electroencephalography and Clinical Neurophysiology, 1994, 91, 71-73.	0.3	6
226	External Urethral Sphincter Motoneuron Properties in Adult Female Rats Studied In Vitro. Journal of Neurophysiology, 2010, 104, 1286-1300.	1.8	6
227	The BCI endeavor and the mission of this new journal. Brain-Computer Interfaces, 2014, 1, 2-4.	1.8	6
228	Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats. Journal of Neurophysiology, 2015, 113, 2232-2241.	1.8	6
229	Ablation of the inferior olive prevents H-reflex down-conditioning in rats. Journal of Neurophysiology, 2016, 115, 1630-1636.	1.8	6
230	Ethical Issues in BCI Research. , 2012, , 374-384.		5
231	The Future of BCIs: Meeting the Expectations. , 2012, , 387-392.		5
232	Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex. Frontiers in Neuroscience, 2018, 12, 505.	2.8	5
233	Brain-computer interface-based assessment of color vision. Journal of Neural Engineering, 2021, 18, 066024.	3.5	5
234	Operantly conditioned plasticity and circadian rhythm in rat H-reflex are independent phenomena. Neuroscience Letters, 1995, 195, 109-112.	2.1	4

#	Article	IF	CITATIONS
235	Effects of chronic nerve cuff and intramuscular electrodes on rat triceps surae motor units. Neuroscience Letters, 2001, 312, 1-4.	2.1	3
236	Temporal transformation of multiunit activity improves identification of single motor units. Journal of Neuroscience Methods, 2002, 114, 87-98.	2.5	3
237	Electromagnetic method forin situ stretch of individual muscles. Medical and Biological Engineering and Computing, 1980, 18, 145-152.	2.8	2
238	Psychoacoustic and electrophysiologic effects of partial eighth nerve damage. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 1984, 5, 43-48.	1.3	2
239	Activity-dependent plasticity in the intact spinal cord. , 2006, , 109-125.		2
240	BCI Operating Protocols. , 2012, , 190-195.		2
241	Clinical Evaluation of BCIs. , 2012, , 326-336.		2
242	Brain–computer interfaces. , 2014, , 565-576.		2
243	Change in short-latency response to limb displacement in primates. Federation Proceedings, 1982, 41, 2156-9.	1.3	2
244	A major new dimension in the problem of brain injury. ELife, 2021, 10, .	6.0	1
245	Activity-dependent plasticity in the intact spinal cord. , 0, , 83-98.		0
246	Spinal Reflex Conditioning: Mechanisms and Implications. Biosystems and Biorobotics, 2014, , 209-217.	0.3	0
247	Nothing either good or bad but action makes it so. Journal of Physiology, 2017, 595, 1003-1004.	2.9	0
248	Recursive PID controller for automatically adjusting M-wave size during H-reflex operant conditioning. , 2021, , .		0
249	Operant Conditioning of Spinal Cord Reflexes in Rats. Springer Protocols, 2012, , 543-551.	0.3	Ο