Stacy W Blain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7566022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology, 2015, 35, S25-S54.	9.6	468
2	Designing a broad-spectrum integrative approach for cancer prevention and treatment. Seminars in Cancer Biology, 2015, 35, S276-S304.	9.6	220
3	p27 as a target for cancer therapeutics. Cancer Cell, 2003, 3, 111-115.	16.8	146
4	Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle, 2008, 7, 892-898.	2.6	145
5	Differential Modification of p27 ^{Kip1} Controls Its Cyclin D-cdk4 Inhibitory Activity. Molecular and Cellular Biology, 2008, 28, 498-510.	2.3	121
6	The Ongoing Search for Biomarkers of CDK4/6 Inhibitor Responsiveness in Breast Cancer. Molecular Cancer Therapeutics, 2020, 19, 3-12.	4.1	63
7	Dual Inhibition of CDK4 and CDK2 via Targeting p27 Tyrosine Phosphorylation Induces a Potent and Durable Response in Breast Cancer Cells. Molecular Cancer Research, 2018, 16, 361-377.	3.4	48
8	Brk/Protein Tyrosine Kinase 6 Phosphorylates p27 ^{KIP1} , Regulating the Activity of Cyclin D–Cyclin-Dependent Kinase 4. Molecular and Cellular Biology, 2015, 35, 1506-1522.	2.3	41
9	Targeting p27 tyrosine phosphorylation as a modality to inhibit CDK4 and CDK2 and cause cell cycle arrest in breast cancer cells. Oncoscience, 2018, 5, 144-145.	2.2	13
10	Tyrosine Phosphorylation of p27Kip1 Correlates with Palbociclib Responsiveness in Breast Cancer Tumor Cells Grown in Explant Culture. Molecular Cancer Research, 2019, 17, 669-675.	3.4	12
11	Chk1 has an essential role in the survival of differentiated cortical neurons in the absence of DNA damage. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 449-459.	4.9	10
12	Macrophage Inhibitory Factor-1 (MIF-1) controls the plasticity of multiple myeloma tumor cells. PLoS ONE, 2018, 13, e0206368.	2.5	7
13	A cyclin D-CDK6 dimer helps to reshuffle cyclin-dependent kinase inhibitors (CKI) to overcome TGF-beta-mediated arrest and maintain CDK2 activity. Cell Cycle, 2021, 20, 808-818.	2.6	2
14	NP-ALT, a Liposomal:Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Molecular Cancer Research, 2021, 19, 1929-1945.	3.4	2
15	Targeting Plasticity and Stemness in Multiple Myeloma Tumor Cells. Blood, 2015, 126, 4270-4270.	1.4	0