Liam C Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565882/publications.pdf

Version: 2024-02-01

87888 110387 7,412 65 38 64 h-index citations g-index papers 69 69 69 9447 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling Interactions within and between Peptide Amphiphile Supramolecular Filaments. Journal of Physical Chemistry B, 2022, 126, 650-659.	2.6	9
2	Supramolecular Copolymers of Peptides and Lipidated Peptides and Their Therapeutic Potential. Journal of the American Chemical Society, 2022, 144, 5562-5574.	13.7	16
3	Acid-Base Equilibrium and Dielectric Environment Regulate Charge in Supramolecular Nanofibers. Frontiers in Chemistry, 2022, 10, 852164.	3.6	6
4	Hybrid Nanocrystals of Small Molecules and Chemically Disordered Polymers. ACS Nano, 2022, 16, 8993-9003.	14.6	8
5	Hybrid gels <i>via</i> bulk interfacial complexation of supramolecular polymers and polyelectrolytes. Soft Matter, 2021, 17, 4949-4956.	2.7	8
6	Self-sorting in supramolecular assemblies. Soft Matter, 2021, 17, 3902-3912.	2.7	14
7	Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter, 2021, 4, 1377-1390.	10.0	57
8	Growth of Extra-Large Chromophore Supramolecular Polymers for Enhanced Hydrogen Production. Nano Letters, 2021, 21, 3745-3752.	9.1	18
9	Supramolecular Interactions and Morphology of Self-Assembling Peptide Amphiphile Nanostructures. Nano Letters, 2021, 21, 6146-6155.	9.1	26
10	Crystalline Supramolecular Polymers: Dynamics, Chirality, and Function. Israel Journal of Chemistry, 2021, 61, 873-883.	2.3	1
11	Chromophore amphiphile–polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 158-168.	10.3	33
12	Transforming Growth Factor \hat{l}^2 -1 Binding by Peptide Amphiphile Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 4551-4560.	5.2	19
13	Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 2020, 5, .	17.6	163
14	Development of Optimized Tissue-Factor-Targeted Peptide Amphiphile Nanofibers to Slow Noncompressible Torso Hemorrhage. ACS Nano, 2020, 14, 6649-6662.	14.6	28
15	Supramolecular–covalent hybrid polymers for light-activated mechanical actuation. Nature Materials, 2020, 19, 900-909.	27.5	186
16	Supramolecular Exchange among Assemblies of Opposite Charge Leads to Hierarchical Structures. Journal of the American Chemical Society, 2020, 142, 12216-12225.	13.7	44
17	Supramolecular and Hybrid Bonding Polymers. Israel Journal of Chemistry, 2020, 60, 124-131.	2.3	15
18	Light-Driven Expansion of Spiropyran Hydrogels. Journal of the American Chemical Society, 2020, 142, 8447-8453.	13.7	190

#	Article	lF	Citations
19	Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials. Journal of Materials Chemistry A, 2019, 7, 1687-1699.	10.3	60
20	Chiral Recognition of Lipid Bilayer Membranes by Supramolecular Assemblies of Peptide Amphiphiles. ACS Biomaterials Science and Engineering, 2019, 5, 2786-2792.	5.2	26
21	Energy Storage: Oriented Multiwalled Organic–Co(OH) ₂ Nanotubes for Energy Storage (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870019.	14.9	1
22	Oriented Multiwalled Organic–Co(OH) 2 Nanotubes for Energy Storage. Advanced Functional Materials, 2018, 28, 1702320.	14.9	26
23	Self-Repair of Structure and Bioactivity in a Supramolecular Nanostructure. Nano Letters, 2018, 18, 6832-6841.	9.1	31
24	Peptide supramolecular materials for therapeutics. Chemical Society Reviews, 2018, 47, 7539-7551.	38.1	208
25	Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nature Communications, 2018, 9, 2395.	12.8	102
26	Electrostatic Control of Polymorphism in Charged Amphiphile Assemblies. Journal of Physical Chemistry B, 2017, 121, 1623-1628.	2.6	37
27	Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. Journal of the American Chemical Society, 2017, 139, 6120-6127.	13.7	60
28	Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure. Journal of the American Chemical Society, 2017, 139, 8915-8921.	13.7	53
29	Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion. Journal of the American Chemical Society, 2017, 139, 8995-9000.	13.7	68
30	Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anionâ^Ï€ Interactions. Journal of the American Chemical Society, 2017, 139, 7823-7830.	13.7	75
31	Supramolecular Assembly of Peptide Amphiphiles. Accounts of Chemical Research, 2017, 50, 2440-2448.	15.6	414
32	Extended-Charge-Transfer Excitons in Crystalline Supramolecular Photocatalytic Scaffolds. Journal of the American Chemical Society, 2016, 138, 11762-11774.	13.7	91
33	Asymmetric Peptide Nanoribbons. Nano Letters, 2016, 16, 6967-6974.	9.1	38
34	Simultaneous covalent and noncovalent hybrid polymerizations. Science, 2016, 351, 497-502.	12.6	164
35	Energy landscapes and functions of supramolecular systems. Nature Materials, 2016, 15, 469-476.	27.5	348
36	Supramolecular Packing Controls H ₂ Photocatalysis in Chromophore Amphiphile Hydrogels. Journal of the American Chemical Society, 2015, 137, 15241-15246.	13.7	107

#	Article	IF	Citations
37	Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518.	6.7	421
38	Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nature Chemistry, 2014, 6, 964-970.	13.6	394
39	Long-Range Ordering of Highly Charged Self-Assembled Nanofilaments. Journal of the American Chemical Society, 2014, 136, 14377-14380.	13.7	28
40	Internal dynamics of a supramolecular nanofibre. Nature Materials, 2014, 13, 812-816.	27.5	154
41	Self-assembly of biomolecular soft matter. Faraday Discussions, 2013, 166, 9.	3.2	84
42	Crystalline polymorphism induced by charge regulation in ionic membranes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16309-16314.	7.1	40
43	Self-Assembly of Highly Ordered Peptide Amphiphile Metalloporphyrin Arrays. Journal of the American Chemical Society, 2012, 134, 14646-14649.	13.7	87
44	Molecular Crystallization Controlled by pH Regulates Mesoscopic Membrane Morphology. ACS Nano, 2012, 6, 10901-10909.	14.6	56
45	Grooved Nanowires from Self-Assembling Hairpin Molecules for Solar Cells. ACS Nano, 2012, 6, 2032-2040.	14.6	55
46	Design of Biomolecules for Nanoengineered Biomaterials for Regenerative Medicine. Methods in Molecular Biology, 2012, 811, 39-49.	0.9	29
47	Self-assembly and conductivity of hydrogen-bonded oligothiophene nanofiber networks. Chemical Communications, 2011, 47, 5702.	4.1	95
48	Self-Assembly and Orientation of Hydrogen-Bonded Oligothiophene Polymorphs at Liquidâ€"Membraneâ€"Liquid Interfaces. Journal of the American Chemical Society, 2011, 133, 16486-16494.	13.7	57
49	A self-assembly pathway to aligned monodomain gels. Nature Materials, 2010, 9, 594-601.	27.5	576
50	Buckled Membranes in Mixed-Valence Ionic Amphiphile Vesicles. Journal of the American Chemical Society, 2009, 131, 12030-12031.	13.7	66
51	Molecular Self-Assembly into One-Dimensional Nanostructures. Accounts of Chemical Research, 2008, 41, 1674-1684.	15.6	699
52	Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel. Chemical Reviews, 2008, 108, 4754-4783.	47.7	934
53	A Templating Approach for Monodisperse Self-Assembled Organic Nanostructures. Journal of the American Chemical Society, 2008, 130, 2742-2743.	13.7	79
54	Supramolecular self-assembly codes for functional structures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1417-1433.	3.4	98

#	Article	IF	CITATIONS
55	Resorcinarenes are hexameric capsules in solution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12296-12300.	7.1	141
56	The Ins and Outs of Molecular Encapsulation ChemInform, 2005, 36, no.	0.0	0
57	Hydrocarbon Binding Inside a Hexameric Pyrogallol [4] arene Capsule. Organic Letters, 2005, 7, 787-789.	4.6	81
58	Diastereoselection of chiral acids in a cylindrical capsule. Chemical Communications, 2005, , 3667.	4.1	18
59	Resorcinarene assemblies as synthetic receptors. Chemical Communications, 2005, , 857.	4.1	46
60	The ins and outs of molecular encapsulation. Organic and Biomolecular Chemistry, 2004, 2, 3051.	2.8	174
61	Glycoluril ribbons tethered by complementary hydrogen bonds. Chemical Communications, 2003, , 1638-1639.	4.1	14
62	New supramolecular organization for a glycoluril: chiral hydrogen-bonded ribbons. Chemical Communications, 2002, , 2228.	4.1	18
63	Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment. Journal of Chemical Education, 2001, 78, 1519.	2.3	9
64	Solid-phase approaches toward cyclic oligomers. Tetrahedron, 2001, 57, 9055-9065.	1.9	11
65	Interplay of Thermochromicity and Liquid Crystalline Behavior in Poly(p-phenyleneethynylene)s: πâ~Ï€ Interactions or Planarization of the Conjugated Backbone?. Macromolecules, 2000, 33, 652-654.	4.8	195