
Chris Denning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Journal of Infectious Diseases, 2022, , .	4.0	6
2	Differentiation and Characterization of Human Pluripotent Stem Cell-Derived Cardiac Endothelial Cells for In Vitro Applications. Methods in Molecular Biology, 2022, 2441, 339-348.	0.9	1
3	Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Frontiers in Physiology, 2022, 13, 806366.	2.8	5
4	Direct RT-qPCR Assay for the Detection of SARS-CoV-2 in Saliva Samples. Methods and Protocols, 2022, 5, 25.	2.0	5
5	Exploring the Psychological Impacts of COVID-19 Social Restrictions on International University Students: A Qualitative Study. International Journal of Environmental Research and Public Health, 2022, 19, 7631.	2.6	15
6	CRISPR/Cas9-mediated generation and analysis of N terminus polymorphic models of β2AR in isogenic hPSC-derived cardiomyocytes. Molecular Therapy - Methods and Clinical Development, 2021, 20, 39-53.	4.1	4
7	The use of fluorescence correlation spectroscopy to monitor cell surface β2â€adrenoceptors at low expression levels in human embryonic stem cellâ€derived cardiomyocytes and fibroblasts. FASEB Journal, 2021, 35, e21398.	0.5	6
8	Comparative effects of viral-transport-medium heat inactivation upon downstream SARS-CoV-2 detection in patient samples. Journal of Medical Microbiology, 2021, 70, .	1.8	4
9	Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. Journal of the American Heart Association, 2021, 10, e019338.	3.7	86
10	Students' Views towards Sars-Cov-2 Mass Asymptomatic Testing, Social Distancing and Self-Isolation in a University Setting during the COVID-19 Pandemic: A Qualitative Study. International Journal of Environmental Research and Public Health, 2021, 18, 4182.	2.6	53
11	Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Molecular Medicine, 2021, 13, e13074.	6.9	34
12	Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes. Stem Cell Reports, 2021, 16, 2169-2181.	4.8	23
13	Discovery of a Novel Polymer for Xenoâ€Free, Longâ€Term Culture of Human Pluripotent Stem Cell Expansion. Advanced Healthcare Materials, 2021, 10, e2001448.	7.6	8
14	Impacts of the COVID-19 Pandemic and Self-Isolation on Students and Staff in Higher Education: A Qualitative Study. International Journal of Environmental Research and Public Health, 2021, 18, 10675.	2.6	35
15	Saliva for COVID-19 Testing: Simple but Useless or an Undervalued Resource?. Frontiers in Virology, 2021, 1, .	1.4	9
16	Unlocking Personalized Biomedicine and Drug Discovery with Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes: Fit for Purpose or Forever Elusive?. Annual Review of Pharmacology and Toxicology, 2020, 60, 529-551.	9.4	28
17	N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nature Genetics, 2020, 52, 48-55.	21.4	147
18	Mitochondrial DNA: Hotspot for Potential Gene Modifiers Regulating Hypertrophic Cardiomyopathy. Journal of Clinical Medicine, 2020, 9, 2349.	2.4	8

#	Article	IF	CITATIONS
19	Transfection of hPSC-Cardiomyocytes Using Viafectâ,,¢ Transfection Reagent. Methods and Protocols, 2020, 3, 57.	2.0	9
20	Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports, 2020, 15, 983-998.	4.8	45
21	Blinded, Multicenter Evaluation of Drug-induced Changes in Contractility Using Human-induced Pluripotent Stem Cell-derived Cardiomyocytes. Toxicological Sciences, 2020, 176, 103-123.	3.1	51
22	lsogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. Journal of Molecular and Cellular Cardiology, 2020, 145, 43-53.	1.9	37
23	Force and Calcium Transients Analysis in Human Engineered Heart Tissues Reveals Positive Force-Frequency Relation at Physiological Frequency. Stem Cell Reports, 2020, 14, 312-324.	4.8	40
24	Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends in Molecular Medicine, 2019, 25, 775-790.	6.7	39
25	Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 2019, 29, 1902016.	14.9	25
26	High-Throughput Phenotyping Toolkit for Characterizing Cellular Models of Hypertrophic Cardiomyopathy in Vitro. Methods and Protocols, 2019, 2, 83.	2.0	9
27	Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications, 2019, 10, 4325.	12.8	51
28	Polymer Microparticles with Defined Surface Chemistry and Topography Mediate the Formation of Stem Cell Aggregates and Cardiomyocyte Function. ACS Applied Materials & Interfaces, 2019, 11, 34560-34574.	8.0	25
29	Investigating the Complex Arrhythmic Phenotype Caused by the Gain-of-Function Mutation KCNQ1-G229D. Frontiers in Physiology, 2019, 10, 259.	2.8	13
30	Surface plasmon resonance imaging of excitable cells. Journal Physics D: Applied Physics, 2019, 52, 104001.	2.8	18
31	Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. F1000Research, 2019, 8, 1911.	1.6	16
32	Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour. F1000Research, 2019, 8, 1911.	1.6	19
33	Simplified Footprint-Free Cas9/CRISPR Editing of Cardiac-Associated Genes in Human Pluripotent Stem Cells. Stem Cells and Development, 2018, 27, 391-404.	2.1	24
34	MUSCLEMOTION. Circulation Research, 2018, 122, e5-e16.	4.5	235
35	Development and validation of broad-spectrum magnetic particle labelling processes for cell therapy manufacturing. Stem Cell Research and Therapy, 2018, 9, 248.	5.5	6
36	lsogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports, 2018, 11, 1226-1243.	4.8	51

#	Article	IF	CITATIONS
37	CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal, 2018, 39, 3879-3892.	2.2	176
38	Dynamics of 5-carboxylcytosine during hepatic differentiation: Potential general role for active demethylation by DNA repair in lineage specification. Epigenetics, 2017, 12, 277-286.	2.7	24
39	Drug-Mediated Shortening of Action Potentials in LQTS2 Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development, 2017, 26, 1695-1705.	2.1	17
40	Stem cell–derived models to improve mechanistic understanding and prediction of human drugâ€induced liver injury. Hepatology, 2017, 65, 710-721.	7.3	54
41	Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 2017, 482, 323-328.	2.1	312
42	Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies?. Journal of Neuromuscular Diseases, 2016, 3, 309-332.	2.6	13
43	Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells and Development, 2016, 25, 439-452.	2.1	52
44	Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion. Biomaterials Science, 2016, 4, 1381-1391.	5.4	19
45	Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E291-9.	7.1	88
46	High throughput screening for discovery of materials that control stem cell fate. Current Opinion in Solid State and Materials Science, 2016, 20, 202-211.	11.5	38
47	Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1728-1748.	4.1	235
48	A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials, 2015, 61, 257-265.	11.4	47
49	Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation. EPJ Techniques and Instrumentation, 2015, 2, 6.	1.3	27
50	Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Advanced Materials, 2015, 27, 4006-4012.	21.0	75
51	Scaling human pluripotent stem cell expansion and differentiation: are cell factories becoming a reality?. Regenerative Medicine, 2015, 10, 925-930.	1.7	6
52	Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2015, 8, 457-466.	2.4	111
53	Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Development (Cambridge), 2015, 142, e0905-e0905.	2.5	3
54	Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. European Heart Journal, 2014, 35, 1078-1087.	2.2	107

#	Article	IF	CITATIONS
55	Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5580-5585.	7.1	67
56	Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent Cells. Stem Cell Reports, 2014, 3, 905-914.	4.8	46
57	Materials for stem cell factories of the future. Nature Materials, 2014, 13, 570-579.	27.5	145
58	Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture. Biomaterials Science, 2014, 2, 1604-1611.	5.4	33
59	Exon skipping and gene transfer restore dystrophin expression in hiPSC-cardiomyocytes harbouring DMD mutations. Stem Cells and Development, 2013, , 150127064140000.	2.1	5
60	Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in-vitro by Raman spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3517-3524.	2.4	63
61	Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Research, 2013, 10, 48-56.	0.7	64
62	Current status of drug screening and disease modelling in human pluripotent stem cells. BioEssays, 2013, 35, 281-298.	2.5	89
63	Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring <i>DMD</i> Mutations. Stem Cells and Development, 2013, 22, 2714-2724.	2.1	56
64	A multiâ€electrode array (MEA) biochip with excimer laserâ€produced microâ€well features. Circuit World, 2012, 38, 30-37.	0.9	1
65	5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics, 2012, 7, 383-389.	2.7	48
66	In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Journal of Cardiovascular Translational Research, 2012, 5, 581-592.	2.4	23
67	Rapid micropatterning of cell lines and human pluripotent stem cells on elastomeric membranes. Biotechnology and Bioengineering, 2012, 109, 2630-2641.	3.3	19
68	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
69	Noninvasive Detection and Imaging of Molecular Markers in Live Cardiomyocytes Derived from Human Embryonic Stem Cells. Biophysical Journal, 2011, 100, 251-259.	0.5	60
70	Directed Differentiation of Human Embryonic Stem Cells to Interrogate the Cardiac Gene Regulatory Network. Molecular Therapy, 2011, 19, 1695-1703.	8.2	46
71	Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nature Protocols, 2011, 6, 701-714.	12.0	24
72	Two new protocols to enhance the production and isolation of human induced pluripotent stem cell lines. Stem Cell Research, 2011, 6, 158-167.	0.7	22

#	Article	IF	CITATIONS
73	Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 2011, 32, 952-962.	2.2	363
74	Toward label-free Raman-activated cell sorting of cardiomyocytes derived from human embryonic stem cells. Journal of Biomedical Optics, 2011, 16, 045002.	2.6	44
75	Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches. , 2011, , 159-179.		0
76	Differentiation of Human Embryonic Stem Cells to Cardiomyocytes. , 2010, , 87-112.		0
77	Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochemical Society Transactions, 2010, 38, 1037-1045.	3.4	104
78	Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 367-375.	1.5	8
79	Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnology and Bioengineering, 2010, 105, 130-140.	3.3	53
80	Bioluminescence Imaging of Human Embryonic Stem Cells Transplanted <i>In Vivo</i> in Murine and Chick Models. Cloning and Stem Cells, 2009, 11, 259-267.	2.6	13
81	Automated, scalable culture of human embryonic stem cells in feederâ€free conditions. Biotechnology and Bioengineering, 2009, 102, 1636-1644.	3.3	147
82	Genetic Manipulation of Human Embryonic Stem Cells in Serum and Feeder-Free Media. Methods in Molecular Biology, 2009, 584, 413-423.	0.9	9
83	Improved genetic manipulation of human embryonic stem cells. Nature Methods, 2008, 5, 389-392.	19.0	95
84	Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nature Protocols, 2008, 3, 1435-1443.	12.0	73
85	Cardiomyocytes from human embryonic stem cells as predictors of cardiotoxicity. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 223-232.	0.5	20
86	Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today: Technologies, 2008, 5, e107-e115.	4.0	12
87	Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Research, 2007, 17, 1731-1742.	5.5	90
88	Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Human Molecular Genetics, 2007, 16, 1253-1268.	2.9	162
89	Oct4 during the pluripotency differentiation transition: who is regulating the regulator. Regenerative Medicine, 2007, 2, 211-215.	1.7	0
90	Transgenic Enrichment of Cardiomyocytes From Human Embryonic Stem Cells. Molecular Therapy, 2007, 15, 2027-2036.	8.2	222

#	Article	IF	CITATIONS
91	Improved Human Embryonic Stem Cell Embryoid Body Homogeneity and Cardiomyocyte Differentiation from a Novel V-96 Plate Aggregation System Highlights Interline Variability. Stem Cells, 2007, 25, 929-938.	3.2	275
92	Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. International Journal of Developmental Biology, 2006, 50, 27-37.	0.6	91
93	The patentability of human embryonic stem cells in Europe. Nature Biotechnology, 2006, 24, 653-655.	17.5	25
94	Genetic Modification of Sheep by Nuclear Transfer With Gene-Targeted Somatic Cells. Methods in Molecular Biology, 2006, 348, 199-212.	0.9	2
95	Somatic Cell Nuclear Transplantation. , 2006, , 45-51.		2
96	Human embryonic stem cells as a model for nutritional programming: An evaluation. Reproductive Toxicology, 2005, 20, 353-367.	2.9	18
97	Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction?. Reproductive BioMedicine Online, 2005, 10, 755-766.	2.4	59
98	Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reproductive BioMedicine Online, 2005, 11, 476-485.	2.4	20
99	Molecular and phenotypic analyses of human embryonic stem cellderived cardiomyocytes. Opportunities and challenges for clinical translation. Thrombosis and Haemostasis, 2005, 94, 728-37.	3.4	26
100	Stem-cell consequences of embryo epigenetic defects. Lancet, The, 2004, 364, 206-208.	13.7	40
101	Proliferative lifespan is conserved after nuclear transfer. Nature Cell Biology, 2003, 5, 535-538.	10.3	72
102	Deletion of the α(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology, 2001, 19, 559-562.	17.5	256
103	Part A: Directed Differentiation of Human Embryonic Stem Cells into Cardiomyocytes. , 0, , 213-228.		0
104	Quantifiable correlation of ToFâ€SIMS and XPS data from polymer surfaces with controlled amino acid and peptide content. Surface and Interface Analysis, 0, , .	1.8	1