Judith M Rollinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756514/publications.pdf

Version: 2024-02-01

123 papers 8,525 citations

36 h-index 48315 88 g-index

129 all docs

129 docs citations

times ranked

129

11048 citing authors

#	Article	IF	CITATIONS
1	Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20, 200-216.	46.4	1,990
2	Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 2015, 33, 1582-1614.	11.7	1,871
3	Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochemical Pharmacology, 2014, 92, 73-89.	4.4	492
4	Energy/Temperature Diagram and Compression Behavior of the Polymorphs of d-Mannitol. Journal of Pharmaceutical Sciences, 2000, 89, 457-468.	3.3	306
5	Acetylcholinesterase Inhibitory Activity of Scopolin and Scopoletin Discovered by Virtual Screening of Natural Products. Journal of Medicinal Chemistry, 2004, 47, 6248-6254.	6.4	193
6	Influenza neuraminidase: A druggable target for natural products. Natural Product Reports, 2012, 29, 11-36.	10.3	146
7	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> Planta Medica, 2009, 75, 195-204.	1.3	131
8	European medicinal polypores – A modern view on traditional uses. Journal of Ethnopharmacology, 2014, 154, 564-583.	4.1	120
9	Antiviral Potential and Molecular Insight into Neuraminidase Inhibiting Diarylheptanoids from <i>Alpinia katsumadai</i> . Journal of Medicinal Chemistry, 2010, 53, 778-786.	6.4	114
10	Honokiol: A non-adipogenic PPARÎ ³ agonist from nature. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4813-4819.	2.4	108
11	Virtual screening for the discovery of bioactive natural products. , 2008, 65, 211-249.		94
12	Strategies for Efficient Lead Structure Discovery from Natural Products. Current Medicinal Chemistry, 2006, 13, 1491-1507.	2.4	89
13	Carnosol and Carnosic Acids from <i>Salvia officinalis </i> Inhibit Microsomal Prostaglandin E ₂ Synthase-1. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 169-176.	2.5	84
14	Structure-Based Virtual Screening for the Discovery of Natural Inhibitors for Human Rhinovirus Coat Protein. Journal of Medicinal Chemistry, 2008, 51, 842-851.	6.4	83
15	Computer-Aided Discovery, Validation, and Mechanistic Characterization of Novel Neolignan Activators of Peroxisome Proliferator-Activated Receptor Î ³ . Molecular Pharmacology, 2010, 77, 559-566.	2.3	72
16	Combining Ethnopharmacology and Virtual Screening for Lead Structure Discovery:  COX-Inhibitors as Application Example. Journal of Chemical Information and Computer Sciences, 2004, 44, 480-488.	2.8	67
17	The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory. Neuroscience, 2011, 197, 280-292.	2.3	65
18	Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Scientific Reports, 2016, 6, 27156.	3.3	63

#	Article	IF	CITATIONS
19	Experimentally Validated hERG Pharmacophore Models as Cardiotoxicity Prediction Tools. Journal of Chemical Information and Modeling, 2014, 54, 2887-2901.	5.4	62
20	Identification of plumericin as a potent new inhibitor of the <scp>NF</scp> â€ <scp>κB</scp> pathway with antiâ€inflammatory activity <i>in vitro</i> and <i>in vivo</i> British Journal of Pharmacology, 2014, 171, 1676-1686.	5.4	61
21	Pharmacophore-based discovery of FXR-agonists. Part II: Identification of bioactive triterpenes from Ganoderma lucidum. Bioorganic and Medicinal Chemistry, 2011, 19, 6779-6791.	3.0	59
22	Discovery of Depsides and Depsidones from Lichen as Potent Inhibitors of Microsomal Prostaglandin E2 Synthase†Using Pharmacophore Models. ChemMedChem, 2012, 7, 2077-2081.	3.2	58
23	Taspine:  Bioactivity-Guided Isolation and Molecular Ligandâ^'Target Insight of a Potent Acetylcholinesterase Inhibitor from Magnolia x soulangiana. Journal of Natural Products, 2006, 69, 1341-1346.	3.0	57
24	Lignan Derivatives from <i>Krameria lappacea</i> Roots Inhibit Acute Inflammation in Vivo and Pro-inflammatory Mediators in Vitro. Journal of Natural Products, 2011, 74, 1779-1786.	3.0	56
25	Impact of Molecular Flexibility on Double Polymorphism, Solid Solutions and Chiral Discrimination during Crystallization of Diprophylline Enantiomers. Molecular Pharmaceutics, 2013, 10, 3850-3861.	4.6	55
26	The human rhinovirus: humanâ€pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Medicinal Research Reviews, 2011, 31, 42-92.	10.5	54
27	Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1 (mPGES-1). Journal of Medicinal Chemistry, 2011, 54, 3163-3174.	6.4	53
28	Discovering COX-Inhibiting Constituents of Morus Root Bark: Activity-Guided versus Computer-Aided Methods. Planta Medica, 2005, 71, 399-405.	1.3	52
29	Natural products modulating the hERG channel: heartaches and hope. Natural Product Reports, 2017, 34, 957-980.	10.3	51
30	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches. Bioorganic and Medicinal Chemistry, 2010, 18, 1507-1515.	3.0	50
31	Discovery of a novel IKK- \hat{l}^2 inhibitor by ligand-based virtual screening techniques. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 577-583.	2.2	50
32	Accessing target information by virtual parallel screeningâ€"The impact on natural product research. Phytochemistry Letters, 2009, 2, 53-58.	1.2	47
33	Morphinans and isoquinolines: Acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors. Bioorganic and Medicinal Chemistry, 2010, 18, 5071-5080.	3.0	46
34	Pharmacophore-based discovery of FXR agonists. Part I: Model development and experimental validation. Bioorganic and Medicinal Chemistry, 2011, 19, 7168-7180.	3.0	46
35	Polymorphism of racemic felodipine and the unusual series of solid solutions in the binary system of its enantiomers. Journal of Pharmaceutical Sciences, 2001, 90, 949-959.	3.3	45
36	Binary System of (R)- and (S)-Nitrendipineâ€"Polymorphism and Structure. Journal of Pharmaceutical Sciences, 1997, 86, 674-679.	3.3	40

#	Article	IF	Citations
37	Computer-Guided Approach to Access the Anti-influenza Activity of Licorice Constituents. Journal of Natural Products, 2014, 77, 563-570.	3.0	38
38	Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Frontiers in Microbiology, 2016, 7, 357.	3.5	38
39	Crystal forms of torasemide: new insights. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53, 75-86.	4.3	37
40	Discovery of Novel CB ₂ Receptor Ligands by a Pharmacophore-Based Virtual Screening Workflow. Journal of Medicinal Chemistry, 2009, 52, 369-378.	6.4	37
41	Anti-Influenza Triterpene Saponins from the Bark of <i>Burkea africana</i> . Journal of Natural Products, 2018, 81, 515-523.	3.0	37
42	The crystal polymorphs of metazachlor. Journal of Thermal Analysis and Calorimetry, 2004, 77, 511-522.	3.6	36
43	Pharmacophore Model Refinement for 11βâ€Hydroxysteroid Dehydrogenase Inhibitors: Search for Modulators of Intracellular Glucocorticoid Concentrations. Molecular Informatics, 2014, 33, 15-25.	2.5	35
44	Novel neuraminidase inhibitors: identification, biological evaluation and investigations of the binding mode. Future Medicinal Chemistry, 2011, 3, 437-450.	2.3	34
45	Predicting Cyclooxygenase Inhibition by Threeâ€Dimensional Pharmacophoric Profiling. Part I: Model Generation, Validation and Applicability in Ethnopharmacology. Molecular Informatics, 2010, 29, 75-86.	2.5	33
46	Physico-chemical Characterization of Hydrated and Anhydrous Crystal Forms of Amlodipine Besylate. Magyar Apróvad Közlemények, 2002, 68, 361-372.	1.4	32
47	Integrated in Silico Tools for Exploiting the Natural Products' Bioactivity. Planta Medica, 2006, 72, 671-678.	1.3	32
48	Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties. Biochemical Pharmacology, 2008, 76, 236-248.	4.4	32
49	Inhibition of $11\hat{l}^2$ -hydroxysteroid dehydrogenase type 1 by plant extracts used as traditional antidiabetic medicines. Fìtoterapìâ, 2009, 80, 200-205.	2.2	32
50	Antipneumococcal activity of neuraminidase inhibiting artocarpin. International Journal of Medical Microbiology, 2015, 305, 289-297.	3.6	32
51	Natural products against acute respiratory infections: Strategies and lessons learned. Journal of Ethnopharmacology, 2020, 248, 112298.	4.1	32
52	Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry, 2015, 114, 114-124.	2.9	31
53	Imbricaric Acid and Perlatolic Acid: Multi-Targeting Anti-Inflammatory Depsides from Cetrelia monachorum. PLoS ONE, 2013, 8, e76929.	2.5	30
54	Anti-cancer Drug Development: Computational Strategies to Identify and Target Proteins Involved in Cancer Metabolism. Current Pharmaceutical Design, 2013, 19, 532-577.	1.9	30

#	Article	IF	CITATIONS
55	1H NMR-MS-based heterocovariance as a drug discovery tool for fishing bioactive compounds out of a complex mixture of structural analogues. Scientific Reports, 2019, 9, 11113.	3.3	28
56	High-performance thin-layer chromatography/bioautography and liquid chromatography-mass spectrometry hyphenated with chemometrics for the quality assessment of Morus alba samples. Journal of Chromatography A, 2019, 1594, 190-198.	3.7	28
57	Neoandrographolide from (i>Andrographis paniculata (/i>as a Potential Natural Chemosensitizer. Planta Medica, 2010, 76, 1698-1700.	1.3	27
58	Lignans, Phenylpropanoids and Polyacetylenes from Chaerophyllum aureum L. (Apiaceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 553-557.	1.4	25
59	Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition. Analytica Chimica Acta, 2014, 846, 60-67.	5 . 4	25
60	Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis. Frontiers in Pharmacology, 2019, 10, 797.	3. 5	25
61	Application of the In Combo Screening Approach For the Discovery of Non-Alkaloid Acetylcholinesterase Inhibitors from Cichorium intybus. Current Drug Discovery Technologies, 2005, 2, 185-193.	1.2	24
62	Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity. Journal of Biomolecular Structure and Dynamics, 2015, 33, 104-120.	3.5	24
63	Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5. Frontiers in Pharmacology, 2017, 8, 468.	3.5	24
64	Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase. Phytomedicine, 2013, 20, 1190-1195.	5. 3	23
65	Human Ether-Ã-go-go Related Gene (hERG) Channel Blocking Aporphine Alkaloids from Lotus Leaves and Their Quantitative Analysis in Dietary Weight Loss Supplements. Journal of Agricultural and Food Chemistry, 2015, 63, 5634-5639.	5.2	23
66	Complementary assays helping to overcome challenges for identifying neuraminidase inhibitors. Future Virology, 2015, 10, 77-88.	1.8	23
67	2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells. Biochemical Pharmacology, 2012, 84, 804-812.	4.4	22
68	Pistacia lentiscus Oleoresin: Virtual Screening and Identification of Masticadienonic and Isomasticadienonic Acids as Inhibitors of 111²-Hydroxysteroid Dehydrogenase 1. Planta Medica, 2015, 81, 525-532.	1.3	22
69	Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project. Monatshefte FÃ1⁄4r Chemie, 2016, 147, 479-491.	1.8	22
70	Preparative supercritical fluid chromatography for lipid class fractionation—a novel strategy in high-resolution mass spectrometry based lipidomics. Analytical and Bioanalytical Chemistry, 2020, 412, 2365-2374.	3.7	22
71	Natural Products in Structure-Assisted Design of Molecular Cancer Therapeutics. Current Pharmaceutical Design, 2010, 16, 1718-1741.	1.9	20
72	hERG Channel Blocking Ipecac Alkaloids Identified by Combined In Silico – In Vitro Screening. Planta Medica, 2016, 82, 1009-1015.	1.3	20

#	Article	IF	CITATIONS
73	Podospermic acid, 1,3,5-tri-O-(7,8-dihydrocaffeoyl)quinic acid from Podospermum laciniatum (Asteraceae). Tetrahedron Letters, 2005, 46, 1291-1294.	1.4	19
74	Applications of Integrated Data Mining Methods to Exploring Natural Product Space for Acetylcholinesterase Inhibitors. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 54-66.	1.1	18
75	Ratanhiaphenol III from Ratanhiae Radix is a PTP1B Inhibitor. Planta Medica, 2012, 78, 678-681.	1.3	18
76	Discovery of Bioactive Natural Products for the Treatment of Acute Respiratory Infections – An Integrated Approach. Planta Medica, 2018, 84, 684-695.	1.3	18
77	A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans. Scientific Reports, 2020, 10, 12323.	3.3	18
78	Venturia inaequalis-Inhibiting Dielsâ°'Alder Adducts from Morus Root Bark. Journal of Agricultural and Food Chemistry, 2006, 54, 8432-8436.	5.2	17
79	Biological Activity of Flavonoids and Rare Sesquiterpene Lactones Isolated From Centaurea ragusina L Frontiers in Pharmacology, 2018, 9, 972.	3.5	17
80	Rapid analytical approach for bioprofiling compounds with radical scavenging and antimicrobial activities from seaweeds. Food Chemistry, 2021, 334, 127562.	8.2	17
81	An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry. European Journal of Orthodontics, 1999, 21, 497-502.	2.4	16
82	In Silico Workflow for the Discovery of Natural Products Activating the G Protein-Coupled Bile Acid Receptor 1. Frontiers in Chemistry, 2018, 6, 242.	3.6	16
83	A Biochemometric Approach for the Identification of In Vitro Anti-Inflammatory Constituents in Masterwort. Biomolecules, 2020, 10, 679.	4.0	16
84	Thermal characterization of torasemide using coupled techniques. Journal of Thermal Analysis and Calorimetry, 2003, 73, 519-526.	3.6	15
85	Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part II: Identification of enzyme inhibitors from Prasaplai, a Thai traditional medicine. Phytomedicine, 2011, 18, 119-133.	5.3	15
86	Plumeridoid C from the Amazonian traditional medicinal plant <i>Himatanthus sucuuba</i> Crystallographica Section C: Crystal Structure Communications, 2011, 67, o409-o412.	0.4	14
87	Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation. Planta Medica, 2015, 81, 1065-1074.	1.3	14
88	Streptomyces spp. From Ethiopia Producing Antimicrobial Compounds: Characterization via Bioassays, Genome Analyses, and Mass Spectrometry. Frontiers in Microbiology, 2018, 9, 1270.	3.5	14
89	New Insights into the Acetylcholinesterase Inhibitory Activity ofLycopodium clavatum. Planta Medica, 2005, 71, 1040-1043.	1.3	13
90	Pharmacophore-based discovery of a novel cytosolic phospholipase A2α inhibitor. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1202-1207.	2.2	13

#	Article	IF	CITATIONS
91	Fast and Green – CO2 Based Extraction, Isolation, and Quantification of Phenolic Styrax Constituents. Planta Medica, 2017, 83, 1068-1075.	1.3	13
92	Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Frontiers in Microbiology, 2017, 8, 205.	3.5	13
93	Steroid sulfatase inhibiting lanostane triterpenes – Structure activity relationship and in silico insights. Bioorganic Chemistry, 2020, 95, 103495.	4.1	11
94	Peucedanum ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells through Interference with NF-κB Signaling. Biomolecules, 2020, 10, 1215.	4.0	10
95	Lanostane Triterpenes from Gloeophyllum odoratum and Their Anti-Influenza Effects. Planta Medica, 2019, 85, 195-202.	1.3	9
96	Insights into the direct anti-influenza virus mode of action of Rhodiola rosea. Phytomedicine, 2022, 96, 153895.	5.3	9
97	Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. Current Pharmaceutical Design, 2013, 19, 532-77.	1.9	9
98	Effects of the coumarin scopoletin on learning and memory, on release of acetylcholine from brain synaptosomes and on long-term potentiation in hippocampus. BMC Pharmacology, 2008, 8, A36.	0.4	8
99	In silico discovery of acylated flavonol monorhamnosides from Eriobotrya japonica as natural, small-molecular weight inhibitors of XIAP BIR3. Bioorganic and Medicinal Chemistry, 2011, 19, 1002-1009.	3.0	8
100	Discovery of Sanggenon G as a natural cellâ€permeable smallâ€molecular weight inhibitor of Xâ€linked inhibitor of apoptosis protein (XIAP). FEBS Open Bio, 2014, 4, 659-671.	2.3	8
101	Black pepper dietary supplementation increases high-density lipoprotein (HDL) levels in pigs. Current Research in Biotechnology, 2019, 1, 28-33.	3.7	8
102	Virtual Screening for the Discovery of Active Principles from Natural Products., 2018,, 333-364.		7
103	Pharmacophore-Based Screening for the Successful Identification of Bio-Active Natural Products. Chimia, 2007, 61, 350-354.	0.6	6
104	Plant extracts in cell-based anti-inflammatory assaysâ€"Pitfalls and considerations related to removal of activity masking bulk components. Phytochemistry Letters, 2014, 10, xli-xlvii.	1.2	6
105	Editorial: Ethnopharmacology in Central and Eastern Europe in the Context of Global Research Developments. Frontiers in Pharmacology, 2019, 10, 341.	3.5	5
106	High-performance Countercurrent Chromatography to Access Rhodiola rosea Influenza Virus Inhibiting Constituents. Planta Medica, 2021, 87, 818-826.	1.3	5
107	Quantitative Analysis of Prenylated Constituents in Commercial Hops Samples Using Ultrahigh-Performance Supercritical Fluid Chromatography. Planta Medica, 2020, 86, 1140-1147.	1.3	5
108	Pharmacokinetics of hERG Channel Blocking Voacangine in Wistar Rats Applying a Validated LC-ESI-MS/MS Method. Planta Medica, 2016, 82, 1030-1038.	1.3	4

#	Article	IF	CITATIONS
109	PPARÎ 3 transcription effect on naturally occurring <i>O</i> -prenyl cinnamaldehydes and cinnamyl alcohol derivatives. Future Medicinal Chemistry, 2021, 13, 1175-1183.	2.3	3
110	A Strength-Weaknesses-Opportunities-Threats (SWOT) Analysis of Cheminformatics in Natural Product Research. Progress in the Chemistry of Organic Natural Products, 2019, 110, 239-271.	1.1	3
111	Editorial [Hot topic: Computational Techniques for Lead Discovery from Nature (Executive Editor:) Tj ETQq1 1	0.784314 rg	gBT ₂ /Overlock
112	Workflow for Segmentation of Caenorhabditis elegans from Fluorescence Images for the Quantitation of Lipids. Applied Sciences (Switzerland), 2021, 11, 11420.	2.5	2
113	(-)-N,N'-but-2-ene-1,4-diylbimorphinans. Die Pharmazie, 1991, 46, 101-2.	0.5	2
114	Azepine-Indole Alkaloids From Psychotria nemorosa Modulate 5-HT2A Receptors and Prevent in vivo Protein Toxicity in Transgenic Caenorhabditis elegans. Frontiers in Neuroscience, 2022, 16, 826289.	2.8	2
115	Computational Approaches for the Discovery of Natural Lead Structures. , 2011, , 97-132.		1
116	In silico Driven Pharmacognosy: Forth, Back and Reverse. Planta Medica, 2015, 81, 427-428.	1.3	1
117	Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells. Frontiers in Pharmacology, 2021, 12, 802153.	3.5	1
118	Expanding the Biological Properties of Alkannins and Shikonins: Their Impact on Adipogenesis and Life Expectancy in Nematodes. Frontiers in Pharmacology, 0, 13 , .	3.5	1
119	Combining Ethnopharmacology and Virtual Screening for Lead Structure Discovery: COX-Inhibitors as Application Example ChemInform, 2004, 35, no.	0.0	0
120	<i>In silico</i> Target Fishing for Rationalized Ligand Discovery Exemplified on Constituents of <i>Ruta graveolens</i> L Planta Medica, 2009, 75, 293-293.	1.3	0
121	Special Issue Dedicated to Professor Dr. Max Wichtl. Planta Medica, 2017, 83, 1108-1109.	1.3	0
122	Special Issue Dedicated to Professor Dr. Max Wichtl. Planta Medica, 2017, 83, 960-961.	1.3	0
123	Biochemometry-Based Discovery of Phenylpropanoids from Azadirachta indica Fruits as Inhibitors of In Vitro Osteoclast Formation. Molecules, 2022, 27, 3611.	3.8	0