Igor B Rogozin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7565085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ecoresponsive Genome of <i>Daphnia pulex</i> . Science, 2011, 331, 555-561.	12.6	1,086
2	A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 2004, 5, R7.	9.6	814
3	Selection in the evolution of gene duplications. Genome Biology, 2002, 3, research0008.1.	9.6	625
4	Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends in Genetics, 2003, 19, 68-72.	6.7	511
5	Essential Genes Are More Evolutionarily Conserved Than Are Nonessential Genes in Bacteria. Genome Research, 2002, 12, 962-968.	5.5	491
6	Genome sequence of the cyanobacterium <i>Prochlorococcus marinus</i> SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10020-10025.	7.1	442
7	Somatic hypermutagenesis in immunoglobulin genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1171, 11-18.	2.4	414
8	Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution. Current Biology, 2003, 13, 1512-1517.	3.9	413
9	Gene Loss, Protein Sequence Divergence, Gene Dispensability, Expression Level, and Interactivity Are Correlated in Eukaryotic Evolution. Genome Research, 2003, 13, 2229-2235.	5.5	367
10	Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4191-4196.	7.1	345
11	Genome trees and the tree of life. Trends in Genetics, 2002, 18, 472-479.	6.7	336
12	A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002, 30, 482-496.	14.5	331
13	Origin and evolution of spliceosomal introns. Biology Direct, 2012, 7, 11.	4.6	292
14	Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate. Science, 2005, 310, 1970-1973.	12.6	291
15	The complete genome of hyperthermophile <i>Methanopyrus kandleri AV19</i> and monophyly of archaeal methanogens. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4644-4649.	7.1	283
16	Somatic mutation hotspots correlate with DNA polymerase η error spectrum. Nature Immunology, 2001, 2, 530-536.	14.5	282
17	Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evolutionary Biology, 2001, 1, 8.	3.2	272
18	Genome Alignment, Evolution of Prokaryotic Genome Organization, and Prediction of Gene Function	5.5	270

#	Article	IF	CITATIONS
19	Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nature Immunology, 2007, 8, 647-656.	14.5	263
20	Analysis of evolution of exon-intron structure of eukaryotic genes. Briefings in Bioinformatics, 2005, 6, 118-134.	6.5	230
21	Coelomata and Not Ecdysozoa: Evidence From Genome-Wide Phylogenetic Analysis. Genome Research, 2003, 14, 29-36.	5.5	221
22	Cutting Edge: DGYW/WRCH Is a Better Predictor of Mutability at G:C Bases in Ig Hypermutation Than the Widely Accepted RGYW/WRCY Motif and Probably Reflects a Two-Step Activation-Induced Cytidine Deaminase-Triggered Process. Journal of Immunology, 2004, 172, 3382-3384.	0.8	184
23	Error rate and specificity of human and murine DNA polymerase Ε. Journal of Molecular Biology, 2001, 312, 335-346.	4.2	171
24	129-derived Strains of Mice Are Deficient in DNA Polymerase Î ¹ and Have Normal Immunoglobulin Hypermutation. Journal of Experimental Medicine, 2003, 198, 635-643.	8.5	169
25	Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Research, 2002, 30, 2212-2223.	14.5	167
26	A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements. PLoS ONE, 2008, 3, e2521.	2.5	162
27	A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes. PLoS Computational Biology, 2011, 7, e1002150.	3.2	160
28	Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Research, 2007, 17, 1034-1044.	5.5	159
29	Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Research, 2011, 39, 9473-9497.	14.5	154
30	Evolution of protein domain promiscuity in eukaryotes. Genome Research, 2008, 18, 449-461.	5.5	153
31	Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutation Research - Reviews in Mutation Research, 2003, 544, 65-85.	5.5	149
32	Analysis of donor splice sites in different eukaryotic organisms. Journal of Molecular Evolution, 1997, 45, 50-59.	1.8	148
33	Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Research, 2004, 32, 3724-3733.	14.5	141
34	Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Research, 2008, 36, 3847-3856.	14.5	126
35	Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase during copying of a mouse immunoglobulin light chain transgene. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9954-9959.	7.1	121
36	APOBEC4, a New Member of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases Predicted by Computational Analysis. Cell Cycle, 2005, 4, 1281-1285.	2.6	118

#	Article	IF	CITATIONS
37	Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. International Review of Cytology, 2006, 255, 41-132.	6.2	112
38	Purifying and directional selection in overlapping prokaryotic genes. Trends in Genetics, 2002, 18, 228-232.	6.7	110
39	Unique Error Signature of the Four-subunit Yeast DNA Polymerase ϵ. Journal of Biological Chemistry, 2003, 278, 43770-43780.	3.4	109
40	Intron sliding in conserved gene families. Trends in Genetics, 2000, 16, 430-432.	6.7	104
41	Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biology Direct, 2009, 4, 11.	4.6	102
42	Microevolutionary Genomics of Bacteria. Theoretical Population Biology, 2002, 61, 435-447.	1.1	100
43	Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucleic Acids Research, 2002, 30, 4264-4271.	14.5	99
44	AID/APOBEC cytosine deaminase induces genome-wide kataegis. Biology Direct, 2012, 7, 47; discussion 47.	4.6	92
45	Evolutionary conservation suggests a regulatory function of AUG triplets in 5'-UTRs of eukaryotic genes. Nucleic Acids Research, 2005, 33, 5512-5520.	14.5	91
46	Conservation versus parallel gains in intron evolution. Nucleic Acids Research, 2005, 33, 1741-1748.	14.5	90
47	Domain mobility in proteins: functional and evolutionary implications. Briefings in Bioinformatics, 2008, 10, 205-216.	6.5	87
48	Widespread Positive Selection in Synonymous Sites of Mammalian Genes. Molecular Biology and Evolution, 2007, 24, 1821-1831.	8.9	86
49	Negative Correlation between Expression Level and Evolutionary Rate of Long Intergenic Noncoding RNAs. Genome Biology and Evolution, 2011, 3, 1390-1404.	2.5	86
50	A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends in Genetics, 2003, 19, 119-124.	6.7	83
51	Comparative analysis of orthologous eukaryotic mRNAs: potential hidden functional signals. Nucleic Acids Research, 2004, 32, 1774-1782.	14.5	82
52	X-ray structure of the complex of regulatory subunits of human DNA polymerase delta. Cell Cycle, 2008, 7, 3026-3036.	2.6	81
53	The SPANX gene family of cancer/testis-specific antigens: Rapid evolution and amplification in African great apes and hominids. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3077-3082.	7.1	77
54	Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes. Genome Biology and Evolution, 2009, 1, 99-113.	2.5	77

#	Article	IF	CITATIONS
55	Context of deletions and insertions in human coding sequences. Human Mutation, 2004, 23, 177-185.	2.5	76
56	Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E506-E515.	7.1	75
57	DNA Polymerase η Contributes to Strand Bias of Mutations of A versus T in Immunoglobulin Genes. Journal of Immunology, 2005, 174, 7781-7786.	0.8	74
58	Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. BMC Genomics, 2006, 7, 311.	2.8	73
59	Preferential loss and gain of introns in $3\hat{a}\in^2$ portions of genes suggests a reverse-transcription mechanism of intron insertion. Gene, 2004, 338, 85-91.	2.2	70
60	Support for the Coelomata Clade of Animals from a Rigorous Analysis of the Pattern of Intron Conservation. Molecular Biology and Evolution, 2007, 24, 2583-2592.	8.9	68
61	Evolutionarily conserved genes preferentially accumulate introns. Genome Research, 2007, 17, 1045-1050.	5.5	68
62	Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region. Human Genetics, 2002, 111, 46-53.	3.8	67
63	Patterns of intron gain and conservation in eukaryotic genes. BMC Evolutionary Biology, 2007, 7, 192.	3.2	67
64	Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase ε. PLoS Genetics, 2010, 6, e1001209.	3.5	66
65	Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Research, 2017, 45, W514-W522.	14.5	65
66	Ecdysozoan Clade Rejected by Genome-Wide Analysis of Rare Amino Acid Replacements. Molecular Biology and Evolution, 2007, 24, 1080-1090.	8.9	63
67	A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biology Direct, 2011, 6, 26.	4.6	63
68	Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Briefings in Bioinformatics, 2004, 5, 131-149.	6.5	62
69	Evolution of alternative and constitutive regions of mammalian 5'UTRs. BMC Genomics, 2009, 10, 162.	2.8	62
70	The Vast, Conserved Mammalian lincRNome. PLoS Computational Biology, 2013, 9, e1002917.	3.2	62
71	Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin. Nature, 2005, 436, 735-739.	27.8	61
72	The role of alternative translation start sites in the generation of human protein diversity. Molecular Genetics and Genomics, 2005, 273, 491-496.	2.1	61

#	Article	IF	CITATIONS
73	Extremely Intron-Rich Genes in the Alveolate Ancestors Inferred with a Flexible Maximum-Likelihood Approach. Molecular Biology and Evolution, 2008, 25, 903-911.	8.9	55
74	Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase. PLoS Genetics, 2013, 9, e1003736.	3.5	54
75	Reconstruction of Ancestral Protosplice Sites. Current Biology, 2004, 14, 1505-1508.	3.9	51
76	Gene Family Level Comparative Analysis of Gene Expression in Mammals Validates the Ortholog Conjecture. Genome Biology and Evolution, 2014, 6, 754-762.	2.5	51
77	Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes. PLoS Genetics, 2015, 11, e1005217.	3.5	49
78	Primate and Rodent Specific Intron Gains and the Origin of Retrogenes with Splice Variants. Molecular Biology and Evolution, 2011, 28, 33-37.	8.9	48
79	Whence genes in pieces: reconstruction of the exon–intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. Wiley Interdisciplinary Reviews RNA, 2013, 4, 93-105.	6.4	47
80	Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 71.	4.1	45
81	Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series. Biology Direct, 2008, 3, 7.	4.6	43
82	Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Scientific Reports, 2017, 7, 12422.	3.3	43
83	Evidence of Splice Signal Migration from Exon to Intron during Intron Evolution. Current Biology, 2003, 13, 2170-2174.	3.9	42
84	Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 402, 41-50.	1.0	41
85	Analysis of Rare Amino Acid Replacements Supports the Coelomata Clade. Molecular Biology and Evolution, 2007, 24, 2594-2597.	8.9	41
86	U12 intron positions are more strongly conserved between animals and plants than U2 intron positions. Biology Direct, 2008, 3, 19.	4.6	40
87	A highly conserved family of inactivated archaeal B family DNA polymerases. Biology Direct, 2008, 3, 32.	4.6	40
88	Differential Action of Natural Selection on the N and C-terminal Domains of 2â€2-5â€2 Oligoadenylate Synthetases and the Potential Nuclease Function of the C-terminal Domain. Journal of Molecular Biology, 2003, 326, 1449-1461.	4.2	38
89	The Subclass Approach for Mutational Spectrum Analysis: Application of the SEM Algorithm. Journal of Theoretical Biology, 1998, 192, 475-487.	1.7	37
90	Origin and Evolution of Retinoid Isomerization Machinery in Vertebrate Visual Cycle: Hint from Jawless Vertebrates. PLoS ONE, 2012, 7, e49975.	2.5	37

#	Article	IF	CITATIONS
91	Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins. Genome Biology, 2001, 2, research0053.1.	9.6	36
92	Use of mutation spectra analysis software. Human Mutation, 2001, 17, 83-102.	2.5	35
93	Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunology, 2005, 6, 10.	2.2	34
94	MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evolutionary Biology, 2014, 14, 237.	3.2	34
95	Germline viral "fossils―guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Scientific Reports, 2016, 6, 28965.	3.3	34
96	Similarity pattern analysis in mutational distributions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 430, 55-74.	1.0	33
97	Molecular dating: ape bones agree with chicken entrails. Trends in Genetics, 2005, 21, 89-92.	6.7	33
98	Accumulation of GC donor splice signals in mammals. Biology Direct, 2008, 3, 30.	4.6	33
99	Mutational signatures and mutable motifs in cancer genomes. Briefings in Bioinformatics, 2017, 19, 1085-1101.	6.5	32
100	Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle, 2018, 17, 833-843.	2.6	32
101	DNA polymerase ĥ mutational signatures are found in a variety of different types of cancer. Cell Cycle, 2018, 17, 348-355.	2.6	32
102	Purifying and positive selection in the evolution of stop codons. Scientific Reports, 2018, 8, 9260.	3.3	31
103	Method of predicting splice sites based on signal interactions. Biology Direct, 2006, 1, 10.	4.6	30
104	Comparative study and prediction of DNA fragments associated with various elements of the nuclear matrix. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1517, 351-364.	2.4	28
105	Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. Environmental and Molecular Mutagenesis, 2012, 53, 699-724.	2.2	28
106	Evolutionary Dynamics of Introns in Plastid-Derived Genes in Plants: Saturation Nearly Reached but Slow Intron Gain Continues. Molecular Biology and Evolution, 2007, 25, 111-119.	8.9	27
107	In search of lost introns. Bioinformatics, 2007, 23, i87-i96.	4.1	27
108	Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Communications Biology, 2021, 4, 1343.	4.4	27

#	Article	IF	CITATIONS
109	Somatic hypermutagenesis in immunoglobulin genes. I. Correlation between somatic mutations and repeats. Somatic mutation properties and clonal selection. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1089, 175-182.	2.4	26
110	Repetitive DNA sequences in the common vole: cloning, characterization and chromosome localization of two novel complex repeats MS3 and MS4 from the genome of the East European vole Microtus rossiaemeridionalis. Chromosome Research, 1998, 6, 351-360.	2.2	26
111	Low-fidelity DNA synthesis by the L979F mutator derivative of Saccharomyces cerevisiae DNA polymerase ζ. Nucleic Acids Research, 2009, 37, 3774-3787.	14.5	26
112	Oncogenic potential is related to activating effect of cancer single and double somatic mutations in receptor tyrosine kinases. Human Mutation, 2012, 33, 1566-1575.	2.5	26
113	Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers. Scientific Reports, 2016, 6, 38133.	3.3	26
114	Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias. Molecular Immunology, 2007, 44, 2659-2666.	2.2	25
115	Replication Protein A (RPA) Hampers the Processive Action of APOBEC3G Cytosine Deaminase on Single-Stranded DNA. PLoS ONE, 2011, 6, e24848.	2.5	25
116	Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing. Genetics Research International, 2014, 2014, 1-8.	2.0	25
117	Genetic characterization of feline calicivirus strains associated with varying disease manifestations during an outbreak season in Missouri (1995–1996). Virus Genes, 2014, 48, 96-110.	1.6	25
118	Evolutionary switches between two serine codon sets are driven by selection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13109-13113.	7.1	25
119	Mutation hotspots in the p53 gene in tumors of different origin: correlation with evolutionary conservation and signs of positive selection. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1679, 95-106.	2.4	24
120	Somatic hypermutagenesis in immunoglobulin genes. III. Somatic mutations in the chicken light chain locus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1306, 171-178.	2.4	23
121	Primordial spliceosomal introns were probably U2-type. Trends in Genetics, 2008, 24, 525-528.	6.7	23
122	Aberrant RNA splicing is the major pathogenic effect in a knockâ€in mouse model of the dominantly inherited c.1430A>G human <i>RPE65</i> mutation. Human Mutation, 2019, 40, 426-443.	2.5	22
123	A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends in Genetics, 2007, 23, 105-108.	6.7	21
124	Phylogenetic analysis of the metazoan carotenoid oxygenase superfamily: a new ancestral gene assemblage of BCO-like (BCOL) proteins. Scientific Reports, 2017, 7, 13192.	3.3	20
125	Computational Prediction of Polycomb-Associated Long Non-Coding RNAs. PLoS ONE, 2012, 7, e44878.	2.5	19
126	Protein-coding regions prediction combining similarity searches and conservative evolutionary properties of protein-coding sequences. Gene, 1999, 226, 129-137.	2.2	18

#	Article	IF	CITATIONS
127	Conservation of the Exon-Intron Structure of Long Intergenic Non-Coding RNA Genes in Eutherian Mammals. Life, 2016, 6, 27.	2.4	18
128	Dollo parsimony and the reconstruction of genome evolution. , 2006, , 190-200.		18
129	Characterization of several LINE-1 elements in Microtus kirgisorum. Mammalian Genome, 1999, 10, 724-729.	2.2	17
130	Cloning and Functional Analysis ofSEL1LPromoter Region, a Pancreas-Specific Gene. DNA and Cell Biology, 2001, 20, 1-9.	1.9	17
131	Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness. Molecular Biology of the Cell, 2015, 26, 786-796.	2.1	17
132	Computational analysis of mutation spectra. Briefings in Bioinformatics, 2003, 4, 210-227.	6.5	16
133	Identification of murine B cell lines that undergo somatic hypermutation focused to A:T and G:C residues. European Journal of Immunology, 2008, 38, 227-239.	2.9	16
134	Comparative mutational analyses of influenza A viruses. Rna, 2015, 21, 36-47.	3.5	16
135	Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158665.	2.4	16
136	Prediction of Human Gene Structure. , 1998, , 215-259.		16
137	LINE-1 element in the vole Microtus subarvalis. Mammalian Genome, 1993, 4, 624-626.	2.2	15
138	Gene structure prediction using information on homologous protein sequence. Bioinformatics, 1996, 12, 161-170.	4.1	15
139	Cross-Species Conservation of SEL1L, a Human Pancreas–Specific Expressing Gene. OMICS A Journal of Integrative Biology, 2002, 6, 187-198.	2.0	15
140	Yeast POL5 Is an Evolutionarily Conserved Regulator of rDNA Transcription Unrelated to Any Known DNA Polymerases. Cell Cycle, 2003, 2, 120-122.	2.6	15
141	Genome-Wide Changes in Protein Translation Efficiency Are Associated with Autism. Genome Biology and Evolution, 2018, 10, 1902-1919.	2.5	15
142	Nucleotide Weight Matrices Reveal Ubiquitous Mutational Footprints of AID/APOBEC Deaminases in Human Cancer Genomes. Cancers, 2019, 11, 211.	3.7	15
143	Computer prediction of sites associated with various elements of the nuclear matrix. Briefings in Bioinformatics, 2000, 1, 33-44.	6.5	14
144	P53 Gain-of-Function: Tumor Biology and Bioinformatics Come Together. Cell Cycle, 2005, 4, 686-688.	2.6	14

#	Article	IF	CITATIONS
145	The cytidine deaminase AID exhibits similar functional properties in yeast and mammals. Molecular Immunology, 2006, 43, 1481-1484.	2.2	14
146	Generalized Portrait of Cancer Metabolic Pathways Inferred from a List of Genes Overexpressed in Cancer. Genetics Research International, 2014, 2014, 1-8.	2.0	14
147	The Presence of Genotoxic and/or Pro-inflammatory Bacterial Genes in Gut Metagenomic Databases and Their Possible Link With Inflammatory Bowel Diseases. Frontiers in Genetics, 2018, 9, 116.	2.3	14
148	Unravelling roles of error-prone DNA polymerases in shaping cancer genomes. Oncogene, 2021, 40, 6549-6565.	5.9	14
149	Evolution of the Mouse Polyubiquitin-C Gene. Journal of Molecular Evolution, 2002, 55, 202-210.	1.8	13
150	Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis. BMC Cancer, 2006, 6, 36.	2.6	13
151	Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the LYS2 gene of yeast Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 473, 151-161.	1.0	12
152	On the Etruscan Mitochondrial DNA Contribution to Modern Humans. American Journal of Human Genetics, 2004, 75, 920-923.	6.2	12
153	The Functional Consequences of the Novel Ribosomal Pausing Site in SARS-CoV-2 Spike Glycoprotein RNA. International Journal of Molecular Sciences, 2021, 22, 6490.	4.1	12
154	Low Variability of the POLG (CAG) n Repeat in North Eurasian Populations. Human Biology, 2005, 77, 355-365.	0.2	11
155	Prediction and phylogenetic analysis of mammalian short interspersed elements (SINEs). Briefings in Bioinformatics, 2000, 1, 260-274.	6.5	10
156	Rapid Evolution of a Cyclin A Inhibitor Gene, roughex, in Drosophila. Molecular Biology and Evolution, 2001, 18, 2110-2118.	8.9	10
157	Response 1 to 'Smaller role for pol η?'. Nature Immunology, 2001, 2, 983-984.	14.5	10
158	Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection. Biology Direct, 2006, 1, 4.	4.6	10
159	Genetics in Genomic Era. Genetics Research International, 2015, 2015, 1-2.	2.0	10
160	Volatile Evolution of Long Non-Coding RNA Repertoire in Retinal Pigment Epithelium: Insights from Comparison of Bovine and Human RNA Expression Profiles. Genes, 2019, 10, 205.	2.4	10
161	FROM CONTEXT-DEPENDENCE OF MUTATIONS TO MOLECULAR MECHANISMS OF MUTAGENESIS. , 2004, , .		10
162	From context-dependence of mutations to molecular mechanisms of mutagenesis. Pacific Symposium on Biocomputing, 2005, , 409-20.	0.7	10

#	Article	IF	CITATIONS
163	Impairment of translation in neurons as a putative causative factor for autism. Biology Direct, 2014, 9, 16.	4.6	9
164	B2-like repetitive sequence from the X Chromosome of the American mink (Mustela vison). Mammalian Genome, 1991, 1, 165-170.	2.2	8
165	Completion of the mapping of transcription start sites for the five-gene block subgenomic RNAs of Beet yellows Closterovirus and identification of putative subgenomic promoters. Virus Research, 2007, 128, 153-158.	2.2	8
166	High frequency of somatic mutations in rat liver mitochondrial DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 685, 97-102.	1.0	8
167	EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution. Advances in Bioinformatics, 2010, 2010, 1-4.	5.7	8
168	AID and APOBECs as Multifaceted Intrinsic Virus-Restricting Factors: Emerging Concepts in the Light of COVID-19. Frontiers in Immunology, 2021, 12, 690416.	4.8	8
169	Sequence and Gene Content in 35 kb Genomic Clone Mapping in the Human Xq27.1 Region. DNA Sequence, 1997, 8, 1-15.	0.7	7
170	Crossing fitness valleys via double substitutions within codons. BMC Biology, 2019, 17, 105.	3.8	7
171	Compensation for the absence of the catalytically active half of DNA polymerase ε in yeast by positively selected mutations in <i>CDC28</i> . Genetics, 2021, 218, .	2.9	7
172	B2 elements present in the human genome. Mammalian Genome, 2000, 11, 177-179.	2.2	6
173	Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. International Journal of Molecular Sciences, 2021, 22, 1876.	4.1	6
174	A Maximum Likelihood Method for Reconstruction of the Evolution of Eukaryotic Gene Structure. Methods in Molecular Biology, 2009, 541, 357-371.	0.9	6
175	Concerted Changes in the Nucleotide Sequences of the Intragenic Promoter Regions of Eukaryotic Genes for tRNAs of All Specificities. Journal of Molecular Evolution, 2003, 57, 520-532.	1.8	5
176	Recombination Is Responsible for the Increased Recovery of Drug-Resistant Mutants with Hypermutated Genomes in Resting Yeast Diploids Expressing APOBEC Deaminases. Frontiers in Genetics, 2017, 8, 202.	2.3	5
177	Comment on "A commensal strain of <i>Staphylococcus epidermidis</i> protects against skin neoplasia―by Nakatsuji <i>et al</i> Science Advances, 2019, 5, eaaw3915.	10.3	5
178	Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae. PLoS Genetics, 2017, 13, e1007074.	3.5	5
179	ESTMAP: a system for expressed sequence tags mapping on genomic sequences. IEEE Transactions on Nanobioscience, 2003, 2, 75-78.	3.3	4
180	Tandem termination signal in plant mRNAs. Gene, 2011, 481, 1-6.	2.2	4

#	Article	IF	CITATIONS
181	Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens, 2020, 9, 572.	2.8	4
182	Palmitoylation of Metazoan Carotenoid Oxygenases. Molecules, 2020, 25, 1942.	3.8	4
183	DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers. Frontiers in Genetics, 2021, 12, 671866.	2.3	4
184	Molecular organization and evolution of the D17Leh80-like loci in the mouse t complex. Mammalian Genome, 1992, 3, 11-16.	2.2	3
185	Double-strand breaks in DNA during somatic hypermutation of Ig genes: cause or consequence?. Trends in Immunology, 2002, 23, 12-13.	6.8	3
186	Genome Evolution. Advances in Bioinformatics, 2010, 2010, 1-2.	5.7	3
187	Stable Intronic Sequences and Exon Skipping Events in the Human RPE65 Gene: Analysis of Expression in Retinal Pigment Epithelium Cells and Cell Culture Models. Frontiers in Genetics, 2019, 10, 634.	2.3	3
188	Identification of a U7snRNA homologue mapping to the human Xq27.1 region, between the DXS1232 and DXS119 loci. Gene, 1997, 187, 221-224.	2.2	2
189	A novel subfamily of LINE-derived elements in mice. Mammalian Genome, 1998, 9, 881-885.	2.2	2
190	Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis. Developmental and Comparative Immunology, 2015, 53, 158-168.	2.3	0
191	A Rigorous Analysis of the Pattern of Intron Conservation Supports the Coelomata Clade of Animals.	1.3	0