Wolfgang A Linke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7564530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovascular Research, 2022, 118, 2903-2918.	3.8	38
2	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure, 2022, 24, 406-420.	7.1	22
3	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30
4	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	3.8	72
5	Nicotinamide for the treatment of heart failure with preserved ejection fraction. Science Translational Medicine, 2021, 13, .	12.4	109
6	Graded Titin Cleavage Uncovers the Protein's Role for Sarcomere Structure and Force Generation of Contracting Muscle. Biophysical Journal, 2021, 120, 61a.	0.5	0
7	Functional characterization of novel alpha-helical rod domain desmin (DES) pathogenic variants associated with dilated cardiomyopathy, atrioventricular block and a risk for sudden cardiac death. International Journal of Cardiology, 2021, 329, 167-174.	1.7	14
8	Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism. Journal of Molecular Biology, 2021, 433, 166901.	4.2	22
9	Unraveling the mysteries of the titin–N2A signalosome. Journal of General Physiology, 2021, 153, .	1.9	3
10	Overexpression of human BAG3P209L in mice causes restrictive cardiomyopathy. Nature Communications, 2021, 12, 3575.	12.8	17
11	Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. ELife, 2021, 10, .	6.0	12
12	Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to <i>TTN</i> mutations. Science Translational Medicine, 2021, 13, eabd3079.	12.4	59
13	Symmetric dimethylarginine in dysfunctional high-density lipoprotein mediates endothelial glycocalyx breakdown in chronic kidney disease. Kidney International, 2020, 97, 502-515.	5.2	18
14	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	3.8	51
15	The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease. Scientific Reports, 2020, 10, 16804.	3.3	9
16	Regulation of titin-based cardiac stiffness by unfolded domain oxidation (UnDOx). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24545-24556.	7.1	37
17	Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathologica Communications, 2020, 8, 154.	5.2	16
18	Maintenance of sarcomeric integrity in adult muscle cells crucially depends on Z-disc anchored titin. Nature Communications, 2020, 11, 4479.	12.8	38

#	Article	IF	CITATIONS
19	Enhanced Cardiomyocyte Function in Hypertensive Rats With Diastolic Dysfunction and Human Heart Failure Patients After Acute Treatment With Soluble Guanylyl Cyclase (sGC) Activator. Frontiers in Physiology, 2020, 11, 345.	2.8	29
20	Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients. Scientific Reports, 2020, 10, 209.	3.3	29
21	A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nature Communications, 2020, 11, 2060.	12.8	42
22	Modulation of Titin-Based Stiffness in Hypertrophic Cardiomyopathy via Protein Kinase D. Frontiers in Physiology, 2020, 11, 240.	2.8	31
23	Graded titin cleavage progressively reduces tension and uncovers the source of A-band stability in contracting muscle. ELife, 2020, 9, .	6.0	31
24	Cardiac α-Actin (<i>ACTC1</i>) Gene Mutation Causes Atrial-Septal Defects Associated With Late-Onset Dilated Cardiomyopathy. Circulation Genomic and Precision Medicine, 2019, 12, e002491.	3.6	23
25	Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. Circulation, 2019, 140, 1647-1660.	1.6	50
26	Tie2 Activation Promotes Protection and Reconstitution of the Endothelial Glycocalyx in Human Sepsis. Thrombosis and Haemostasis, 2019, 119, 1827-1838.	3.4	35
27	The Translational Landscape of the Human Heart. Cell, 2019, 178, 242-260.e29.	28.9	407
28	Posttranslational modifications of titin from cardiac muscle: how, where, and what for?. FEBS Journal, 2019, 286, 2240-2260.	4.7	49
29	Specific Cleavage of the Titin Springs In Situ Uncovers the Role of Titin-Based Force in Sarcomere Structure and Muscle Contraction. Biophysical Journal, 2019, 116, 402a.	0.5	0
30	The continuous heart failure spectrum: moving beyond an ejection fraction classification. European Heart Journal, 2019, 40, 2155-2163.	2.2	195
31	A novel isoform of myosin 18A (Myo18Aγ) is an essential sarcomeric protein in mouse heart. Journal of Biological Chemistry, 2019, 294, 7202-7218.	3.4	17
32	Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Scientific Reports, 2019, 9, 2956.	3.3	11
33	SPRED2 deficiency elicits cardiac arrhythmias and premature death via impaired autophagy. Journal of Molecular and Cellular Cardiology, 2019, 129, 13-26.	1.9	21
34	Imbalances in protein homeostasis caused by mutant desmin. Neuropathology and Applied Neurobiology, 2019, 45, 476-494.	3.2	13
35	Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H459-H475.	3.2	19
36	Titin as a force-generating muscle protein under regulatory control. Journal of Applied Physiology, 2019, 126, 1474-1482.	2.5	96

#	Article	IF	CITATIONS
37	Treatments targeting inotropy. European Heart Journal, 2019, 40, 3626-3644.	2.2	123
38	Stretch-induced compliance: a novel adaptive biological mechanism following acute cardiac load. Cardiovascular Research, 2018, 114, 656-667.	3.8	18
39	Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovascular Research, 2018, 114, 954-964.	3.8	148
40	Protein phosphatase 5 regulates titin phosphorylation and function at a sarcomere-associated mechanosensor complex in cardiomyocytes. Nature Communications, 2018, 9, 262.	12.8	44
41	Titin Gene and Protein Functions in Passive and Active Muscle. Annual Review of Physiology, 2018, 80, 389-411.	13.1	167
42	A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. Circulation Genomic and Precision Medicine, 2018, 11, e002135.	3.6	35
43	Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circulation Research, 2018, 123, 342-355.	4.5	64
44	Alterations in Titin Properties and Myocardial Fibrosis Correlate With Clinical Phenotypes in Hemodynamic Subgroups of Severe Aortic Stenosis. JACC Basic To Translational Science, 2018, 3, 335-346.	4.1	11
45	A personal tribute to Johann Caspar Rüegg (1930–2018): milestones of muscle research. Biophysical Reviews, 2018, 10, 1129-1131.	3.2	Ο
46	Acute stimulation of the soluble guanylate cyclase does not impact on left ventricular capacitance in normal and hypertrophied porcine hearts in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H669-H680.	3.2	6
47	Dietary spermidine for lowering high blood pressure. Autophagy, 2017, 13, 767-769.	9.1	63
48	Membrane Remodeling by a Bacterial Phospholipid-Methylating Enzyme. MBio, 2017, 8, .	4.1	19
49	Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation, 2017, 135, 1832-1847.	1.6	462
50	Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy. Cardiovascular Research, 2017, 113, 1161-1172.	3.8	54
51	Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophysical Reviews, 2017, 9, 225-237.	3.2	65
52	Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. European Journal of Human Genetics, 2017, 25, 1040-1048.	2.8	35
53	Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2017, 113, 9-21.	1.9	84
54	Placenta-Derived Adherent Stromal Cells Improve Diabetes Mellitus-Associated Left Ventricular Diastolic Performance. Stem Cells Translational Medicine, 2017, 6, 2135-2145.	3.3	28

#	Article	IF	CITATIONS
55	The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease. Biophysical Reviews, 2017, 9, 431-441.	3.2	39
56	Titin-truncating variants affect heart function in disease cohorts and the general population. Nature Genetics, 2017, 49, 46-53.	21.4	255
57	CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS ONE, 2017, 12, e0182643.	2.5	28
58	Translocation of molecular chaperones to the titin springs is common in skeletal myopathy patients and affects sarcomere function. Acta Neuropathologica Communications, 2017, 5, 72.	5.2	39
59	Sphingosineâ€1â€Phosphate Receptor 1 Regulates Cardiac Function by Modulating Ca ²⁺ Sensitivity and Na ⁺ /H ⁺ Exchange and Mediates Protection by Ischemic Preconditioning. Journal of the American Heart Association, 2016, 5, .	3.7	51
60	Titin stiffness modifies the force-generating region of muscle sarcomeres. Scientific Reports, 2016, 6, 24492.	3.3	45
61	Molecular and structural transition mechanisms in longâ€ŧerm volume overload. European Journal of Heart Failure, 2016, 18, 362-371.	7.1	53
62	Left Atrial Remodeling and Atrioventricular Coupling in a Canine Model of Early Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2016, 9, .	3.9	72
63	Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine, 2016, 22, 1428-1438.	30.7	801
64	Expanding the phenotype of <i>BICD2</i> mutations toward skeletal muscle involvement. Neurology, 2016, 87, 2235-2243.	1.1	28
65	A Novel Role for PP5 in Regulating Titin Phosphorylation and Function in the Heart. Biophysical Journal, 2016, 110, 298a.	0.5	0
66	Work Done by Titin Protein Folding Assists Muscle Contraction. Cell Reports, 2016, 14, 1339-1347.	6.4	147
67	Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. International Journal of Cardiology, 2016, 203, 1061-1066.	1.7	42
68	Functional characterization of the novel DES mutation p.L136P associated with dilated cardiomyopathy reveals a dominant filament assembly defect. Journal of Molecular and Cellular Cardiology, 2016, 91, 207-214.	1.9	39
69	Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC: Heart Failure, 2016, 4, 312-324.	4.1	390
70	Posttranslational Modification of Titin Domains as a Main Regulator of Myocardial Stiffness. Biophysical Journal, 2015, 108, 34a.	0.5	0
71	A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1407-H1418.	3.2	70
72	Emerging importance of oxidative stress in regulating striated muscle elasticity. Journal of Muscle Research and Cell Motility, 2015, 36, 25-36.	2.0	63

#	Article	IF	CITATIONS
73	Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovascular Research, 2015, 106, 217-226.	3.8	87
74	Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science, 2015, 349, 982-986.	12.6	508
75	Myofibrillar instability exacerbated by acute exercise in filaminopathy. Human Molecular Genetics, 2015, 24, 7207-7220.	2.9	50
76	FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Research in Cardiology, 2014, 109, 451.	5.9	58
77	S-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding. Cell, 2014, 156, 1235-1246.	28.9	170
78	Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. Journal of Cell Biology, 2014, 204, 187-202.	5.2	98
79	Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Research in Cardiology, 2014, 109, 449.	5.9	55
80	Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology <scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> ssociation <scp>W</scp> inter <scp>M</scp> eeting on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European Journal of Heart Failure, 2014, 16, 6-14.	7.1	1
81	Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovascular Research, 2014, 104, 423-431.	3.8	70
82	Heart failure with preserved ejection fraction. Pflugers Archiv European Journal of Physiology, 2014, 466, 1037-1053.	2.8	110
83	Gigantic Business. Circulation Research, 2014, 114, 1052-1068.	4.5	288
84	Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. Journal of General Physiology, 2014, 143, 1432OIA1.	1.9	0
85	Syndecanâ€4 promotes myocardial stiffness by regulating collagen expression and crossâ€linking in response to pressure overload (1152.2). FASEB Journal, 2014, 28, 1152.2.	0.5	0
86	Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. Cell Communication and Signaling, 2013, 11, 56.	6.5	38
87	Untangling regulatory networks to spot drivers and modulators of cardiac disease. Journal of Molecular and Cellular Cardiology, 2013, 63, 1-3.	1.9	0
88	Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 812-822.	4.1	71
89	Deranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction. Cardiovascular Research, 2013, 97, 464-471.	3.8	191
90	Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model. Circulation: Heart Failure, 2013, 6, 1239-1249.	3.9	241

#	Article	IF	CITATIONS
91	Crucial Role for Ca ²⁺ /Calmodulin-Dependent Protein Kinase-II in Regulating Diastolic Stress of Normal and Failing Hearts via Titin Phosphorylation. Circulation Research, 2013, 112, 664-674.	4.5	160
92	Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts. Cardiovascular Research, 2013, 99, 648-656.	3.8	105
93	Ageâ€dependent changes in contractile function and passive elastic properties of myocardium from mice lacking muscle LIM protein (MLP). European Journal of Heart Failure, 2012, 14, 430-437.	7.1	11
94	Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes and Development, 2012, 26, 114-119.	5.9	138
95	Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Human Molecular Genetics, 2012, 21, 3237-3254.	2.9	106
96	Alteration of the Beta-Adrenergic Signaling Pathway in Human Heart Failure. Current Pharmaceutical Biotechnology, 2012, 13, 2522-2531.	1.6	5
97	Small Heat Shock Proteins Associate under Stress Conditions with Elastic Titin Filaments and Provide Protection from Aggregation. Biophysical Journal, 2012, 102, 359a-360a.	0.5	0
98	King of hearts: a splicing factor rules cardiac proteins. Nature Medicine, 2012, 18, 660-661.	30.7	16
99	Alteration of the Beta-Adrenergic Signaling Pathway in Human Heart Failure. Current Pharmaceutical Biotechnology, 2012, 13, 2522-2531.	1.6	10
100	Alteration of the beta-adrenergic signaling pathway in human heart failure. Current Pharmaceutical Biotechnology, 2012, 13, 2522-31.	1.6	5
101	Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue. Circulation Research, 2011, 109, 1105-1114.	4.5	124
102	Transmural Heterogeneity of Myofilament Function and Sarcomeric Protein Phosphorylation in Remodeled Myocardium of Pigs with a Recent Myocardial Infarction. Frontiers in Physiology, 2011, 2, 83.	2.8	28
103	Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Archiv European Journal of Physiology, 2011, 462, 143-154.	2.8	45
104	Response to Letter Regarding Article, "Differential Cardiac Remodeling in Preload Versus Afterload― Circulation, 2011, 123, .	1.6	0
105	Telethonin Deficiency Is Associated With Maladaptation to Biomechanical Stress in the Mammalian Heart. Circulation Research, 2011, 109, 758-769.	4.5	78
106	Sildenafil and B-Type Natriuretic Peptide Acutely Phosphorylate Titin and Improve Diastolic Distensibility In Vivo. Circulation, 2011, 124, 2882-2891.	1.6	162
107	The Giant Protein Titin: A Regulatory Node That Integrates Myocyte Signaling Pathways. Journal of Biological Chemistry, 2011, 286, 9905-9912.	3.4	136
108	Spider strength and stretchability. Nature Chemical Biology, 2010, 6, 702-703.	8.0	12

#	Article	IF	CITATIONS
109	Molecular Giant Vulnerable to Oxidative Damage. Circulation, 2010, 122, 2002-2004.	1.6	7
110	A Common <i>MLP</i> (Muscle LIM Protein) Variant Is Associated With Cardiomyopathy. Circulation Research, 2010, 106, 695-704.	4.5	90
111	Multiple Potential Molecular Contributors to Atrial Hypocontractility Caused by Atrial Tachycardia Remodeling in Dogs. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 530-541.	4.8	112
112	Modulation of Human Ether A Gogo Related Channels by CASQ2 Contributes to Etiology of Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Cellular Physiology and Biochemistry, 2010, 26, 503-512.	1.6	29
113	The Giant Protein Titin as an Integrator of Myocyte Signaling Pathways. Physiology, 2010, 25, 186-198.	3.1	102
114	Differential Cardiac Remodeling in Preload Versus Afterload. Circulation, 2010, 122, 993-1003.	1.6	267
115	Regulation of Oscillatory Contraction in Insect Flight Muscle by Troponin. Journal of Molecular Biology, 2010, 397, 110-118.	4.2	27
116	Enhancing cGMP With Sildenafil and BNP Acutely Reduces Diastolic Stiffness in Experimental Diastolic Heart Failure. Journal of Cardiac Failure, 2010, 16, S11.	1.7	0
117	Response to Gehmlich et al. Letter to the Editor of the Journal of Molecular and Cellular Cardiology Regarding "MLP: A Stress Sensor Goes Nuclear― Journal of Molecular and Cellular Cardiology, 2010, 48, 426-427.	1.9	2
118	Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 910-916.	1.9	70
119	Functional Role of the Extended Loop 2 in the Myosin 9b Head for Binding F-actin. Journal of Biological Chemistry, 2009, 284, 3663-3671.	3.4	14
120	Protein Kinase G Modulates Human Myocardial Passive Stiffness by Phosphorylation of the Titin Springs. Circulation Research, 2009, 104, 87-94.	4.5	354
121	Prevention of Myofilament Dysfunction by β-Blocker Therapy in Postinfarct Remodeling. Circulation: Heart Failure, 2009, 2, 233-242.	3.9	38
122	Titin-based mechanical signalling in normal and failing myocardium. Journal of Molecular and Cellular Cardiology, 2009, 46, 490-498.	1.9	158
123	Modulation of Titin-Based Stiffness by Disulfide Bonding in the Cardiac Titin N2-B Unique Sequence. Biophysical Journal, 2009, 97, 825-834.	0.5	151
124	Titin and Titin-Associated Proteins in Myocardial Stress-Sensing and Mechanical Dysfunction. , 2009, , 3-34.		2
125	Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflugers Archiv European Journal of Physiology, 2008, 456, 101-115.	2.8	96
126	Titin Isoforms, Extracellular Matrix, and Global Chamber Remodeling in Experimental Dilated Cardiomyopathy. Circulation: Heart Failure, 2008, 1, 192-199.	3.9	29

#	Article	IF	CITATIONS
127	Thyroid Hormone Regulates Developmental Titin Isoform Transitions via the Phosphatidylinositol-3-Kinase/ AKT Pathway. Circulation Research, 2008, 102, 439-447.	4.5	100
128	Mineralocorticoid Signaling in Transition to Heart Failure With Normal Ejection Fraction. Hypertension, 2008, 51, 289-295.	2.7	38
129	Acute and Chronic Ventricular-Arterial Coupling in Systole and Diastole. Hypertension, 2007, 50, 503-511.	2.7	66
130	Acute Ventricular-Arterial Coupling: Insights from an Elderly Hypertensive Canine Model. Journal of Cardiac Failure, 2007, 13, S82.	1.7	0
131	Kontraktionsmechanismen. Springer-Lehrbuch, 2007, , 111-139.	0.0	0
132	The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4451-4456.	7.1	93
133	Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy. Journal of Structural Biology, 2006, 155, 263-272.	2.8	47
134	Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-l isoform switching are not critically triggered by birth. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H496-H506.	3.2	57
135	Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. Journal of Physiology, 2006, 577, 339-352.	2.9	84
136	Plasticity of cardiac titin/connectin in heart development. Journal of Muscle Research and Cell Motility, 2006, 26, 333-342.	2.0	26
137	Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. Journal of Muscle Research and Cell Motility, 2006, 27, 435-444.	2.0	128
138	Myocardial Structure and Function Differ in Systolic and Diastolic Heart Failure. Circulation, 2006, 113, 1966-1973.	1.6	558
139	Isoform Diversity of Giant Proteins in Relation to Passive and Active Contractile Properties of Rabbit Skeletal Muscles. Journal of General Physiology, 2005, 126, 461-480.	1.9	284
140	Multiple sources of passive stress relaxation in muscle fibres. Physics in Medicine and Biology, 2004, 49, 3613-3627.	3.0	33
141	Association of the Chaperone αB-crystallin with Titin in Heart Muscle. Journal of Biological Chemistry, 2004, 279, 7917-7924.	3.4	147
142	Developmentally Regulated Switching of Titin Size Alters Myofibrillar Stiffness in the Perinatal Heart. Circulation Research, 2004, 94, 967-975.	4.5	177
143	Passive Stiffness Changes Caused by Upregulation of Compliant Titin Isoforms in Human Dilated Cardiomyopathy Hearts. Circulation Research, 2004, 95, 708-716.	4.5	300
144	A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO Journal, 2004, 23, 772-779.	7.8	84

#	Article	IF	CITATIONS
145	Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. Journal of Muscle Research and Cell Motility, 2003, 24, 175-189.	2.0	167
146	Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12688-12693.	7.1	105
147	Varieties of elastic protein in invertebrate muscles. , 2003, , 435-447.		18
148	Titin Stiffness in Heart Disease. Circulation, 2003, 107, e73; author reply e73.	1.6	4
149	Alcohol Affects the Skeletal Muscle Proteins, Titin and Nebulin in Male and Female Rats. Journal of Nutrition, 2003, 133, 1154-1157.	2.9	40
150	Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. , 2003, , 483-497.		2
151	Titin Isoform Switch in Ischemic Human Heart Disease. Circulation, 2002, 106, 1333-1341.	1.6	316
152	PEVK Domain of Titin: An Entropic Spring with Actin-Binding Properties. Journal of Structural Biology, 2002, 137, 194-205.	2.8	179
153	Titinâ€based contribution to shortening velocity of rabbit skeletal myofibrils. Journal of Physiology, 2002, 540, 177-188.	2.9	31
154	Reverse engineering of the giant muscle protein titin. Nature, 2002, 418, 998-1002.	27.8	487
155	Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications. Pflugers Archiv European Journal of Physiology, 2002, 444, 771-776.	2.8	25
156	Varieties of elastic protein in invertebrate muscles. Journal of Muscle Research and Cell Motility, 2002, 23, 435-447.	2.0	64
157	Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. Journal of Muscle Research and Cell Motility, 2002, 23, 483-497.	2.0	83
158	Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. Journal of Cell Biology, 2001, 154, 1045-1058.	5.2	89
159	Unfolding of Titin Domains Explains the Viscoelastic Behavior of Skeletal Myofibrils. Biophysical Journal, 2001, 80, 1442-1451.	0.5	178
160	Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. Journal of Cell Biology, 2001, 155, 393-404.	5.2	122
161	Interaction Between PEVK-Titin and Actin Filaments. Circulation Research, 2001, 89, 874-881.	4.5	150
162	Hypercontractile Properties of Cardiac Muscle Fibers in a Knock-in Mouse Model of Cardiac Myosin-binding Protein-C. Journal of Biological Chemistry, 2001, 276, 5353-5359.	3.4	66

#	Article	IF	CITATIONS
163	Sarcomere Length–tension Relationship of Rat Cardiac Myocytes at Lengths Greater than Optimum. Journal of Molecular and Cellular Cardiology, 2000, 32, 247-259.	1.9	52
164	Titin Elasticity in the Context of the Sarcomere: Force and Extensibility Measurements on Single Myofibrils. Advances in Experimental Medicine and Biology, 2000, 481, 179-206.	1.6	16
165	I-Band Titin in Cardiac Muscle Is a Three-Element Molecular Spring and Is Critical for Maintaining Thin Filament Structure. Journal of Cell Biology, 1999, 146, 631-644.	5.2	228
166	Mechanically Driven Contour-Length Adjustment in Rat Cardiac Titin's Unique N2B Sequence. Circulation Research, 1999, 84, 1339-1352.	4.5	153
167	Striational autoantibodies in myasthenia gravis patients recognize I-band titin epitopes. Journal of Neuroimmunology, 1998, 81, 98-108.	2.3	25
168	A Spring Tale: New Facts on Titin Elasticity. Biophysical Journal, 1998, 75, 2613-2614.	0.5	92
169	Nature of PEVK-titin elasticity in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8052-8057.	7.1	219
170	Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophysical Journal, 1997, 73, 905-919.	0.5	164
171	Tissue-specific expression and α-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. Journal of Molecular Biology, 1997, 270, 688-695.	4.2	195
172	The Giant Protein Titin. Circulation Research, 1997, 80, 290-294.	4.5	202
173	Towards a Molecular Understanding of the Elasticity of Titin. Journal of Molecular Biology, 1996, 261, 62-71.	4.2	269
174	Limits of titin extension in single cardiac myofibrils. Journal of Muscle Research and Cell Motility, 1996, 17, 425-438.	2.0	27
175	Passive and active tension in single cardiac myofibrils. Biophysical Journal, 1994, 67, 782-792.	0.5	183
176	Spontaneous sarcomeric oscillations at intermediate activation levels in single isolated cardiac myofibrils Circulation Research, 1993, 73, 724-734.	4.5	57
177	Heparanase Is a Putative Mediator of Endothelial Glycocalyx Damage in COVID-19 – A Proof-of-Concept Study. Frontiers in Immunology, 0, 13, .	4.8	5