Satoshi Hamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756419/publications.pdf Version: 2024-02-01

		257450	161849
147	3,493	24	54
papers	citations	h-index	g-index
151	151	151	2699
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	2.8	710
2	Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Lowâ€Temperature Atmospheric Pressure Plasma Application. Plasma Processes and Polymers, 2010, 7, 33-42.	3.0	469
3	The future for plasma science and technology. Plasma Processes and Polymers, 2019, 16, 1800118.	3.0	160
4	Reducing Damage to Si Substrates during Gate Etching Processes. Japanese Journal of Applied Physics, 2008, 47, 5324.	1.5	111
5	Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Sources Science and Technology, 2018, 27, 023001.	3.1	98
6	Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets. Chemistry of Materials, 2009, 21, 3526-3535.	6.7	89
7	Fluctuation spectrum and transport from ion temperature gradient driven modes in sheared magnetic fields. Physics of Fluids B, 1990, 2, 1833-1851.	1.7	86
8	Rapid Breakdown Mechanisms of Open Air Nanosecond Dielectric Barrier Discharges. Physical Review Letters, 2011, 107, 065002.	7.8	78
9	Nonlinear Evolution ofq=1Triple Tearing Modes in a Tokamak Plasma. Physical Review Letters, 2005, 94, 065001.	7.8	65
10	Plasma generation inside externally supplied Ar bubbles in water. Plasma Sources Science and Technology, 2008, 17, 025006.	3.1	58
11	Fast growing double tearing modes in a tokamak plasma. Physics of Plasmas, 2005, 12, 082504.	1.9	52
12	Hydrogen effects in hydrofluorocarbon plasma etching of silicon nitride: Beam study with CF+, CF2+, CHF2+, and CH2F+ ions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	52
13	MD simulations of amorphous SiO2 thin film formation in reactive sputtering deposition processes. Thin Solid Films, 2007, 515, 4879-4882.	1.8	44
14	Monte Carlo simulations of space-charge-limited ion transport through collisional plasma sheaths. Physical Review A, 1991, 44, 2664-2681.	2.5	42
15	Radio-Frequency-Driven Atmospheric-Pressure Plasmas in Contact with Liquid Water. Japanese Journal of Applied Physics, 2006, 45, 8294-8297.	1.5	38
16	Ion beam experiments for the study of plasma–surface interactions. Journal Physics D: Applied Physics, 2014, 47, 224008.	2.8	38
17	Molecular-dynamics simulations of organic polymer etching by hydrocarbon beams. Journal of Applied Physics, 2004, 96, 6147-6152.	2.5	36
18	Fragment Ions of Dimethylsilane Produced by Hot Tungsten Wires. Japanese Journal of Applied Physics, 2006, 45, 8204-8207.	1.5	35

#	Article	IF	CITATIONS
19	Characterization of polymer layer formation during SiO ₂ /SiN etching by fluoro/hydrofluorocarbon plasmas. Japanese Journal of Applied Physics, 2014, 53, 03DD02.	1.5	33
20	Experimental evaluation of MgO sputtering yields by monochromatic Ne, Kr, or Xe ion beams. Thin Solid Films, 2008, 517, 835-840.	1.8	31
21	lon energy and angular distributions in low-pressure capacitive oxygen RF discharges driven by tailored voltage waveforms. Plasma Sources Science and Technology, 2018, 27, 104008.	3.1	31
22	Molecular dynamics simulation of the formation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>3bonds in hydrogenated diamondlike carbon deposition processes. Physical Review E, 2010, 81, 041602.</mml:mn></mml:msup></mml:mrow></mml:math 	> < /mmi:msı	ıp>∛/mml:mro
23	Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE, 2018, 13, e0194303.	2.5	30
24	The effect of photoemission on nanosecond helium microdischarges at atmospheric pressure. Plasma Sources Science and Technology, 2018, 27, 054001.	3.1	27
25	Measurement of Magnesium Oxide Sputtering Yields by He and Ar Ions with a Low-Energy Mass-Selected Ion Beam System. Japanese Journal of Applied Physics, 2007, 46, L1132-L1134.	1.5	25
26	Sputtering yields of Au by low-energy noble gas ion bombardment. Journal Physics D: Applied Physics, 2009, 42, 135203.	2.8	24
27	Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	24
28	Anomalous transport arising from nonlinear resistive pressureâ€driven modes in a plasma. Physics of Fluids B, 1989, 1, 1416-1430.	1.7	22
29	Sputtering yields and surface modification of poly(methyl methacrylate) (PMMA) by low-energy Ar ⁺ / ion bombardment with vacuum ultraviolet (VUV) photon irradiation. Journal Physics D: Applied Physics, 2012, 45, 505201.	2.8	22
30	Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine. AIP Conference Proceedings, 2013, , .	0.4	22
31	Molecular dynamics simulation analyses on injection angle dependence of SiO2 sputtering yields by fluorocarbon beams. Thin Solid Films, 2007, 515, 4883-4886.	1.8	21
32	Surface Modification of Poly(methyl methacrylate) by Hydrogen-Plasma Exposure and Its Sputtering Characteristics by Ultraviolet Light Irradiation. Japanese Journal of Applied Physics, 2013, 52, 090201.	1.5	21
33	Characterization of descriptors in machine learning for data-based sputtering yield prediction. Physics of Plasmas, 2021, 28, .	1.9	21
34	Self-consistent Monte Carlo simulation of the cathode fall including treatment of negative-glow electrons. Physical Review A, 1992, 46, 1066-1077.	2.5	20
35	Numerical Simulation of Etching and Deposition Processes. Japanese Journal of Applied Physics, 1997, 36, 4762-4768.	1.5	20
36	Molecular dynamics study on Ar ion bombardment effects in amorphous SiO2 deposition processes. Journal of Applied Physics, 2006, 100, 123305.	2.5	20

#	Article	IF	CITATIONS
37	Characteristics of silicon etching by silicon chloride ions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	20
38	Molecular dynamics simulation of Si and SiO2 reactive ion etching by fluorine-rich ion species. Surface and Coatings Technology, 2019, 380, 125032.	4.8	20
39	Dynamics of resistive double tearing modes with broad linear spectra. Physics of Plasmas, 2007, 14, 022107.	1.9	19
40	Molecular dynamics simulation study on substrate temperature dependence of sputtering yields for an organic polymer under ion bombardment. Journal of Applied Physics, 2007, 101, 046108.	2.5	18
41	Experimental evaluation of CaO, SrO and BaO sputtering yields by Ne ⁺ or Xe ⁺ ions. Journal Physics D: Applied Physics, 2011, 44, 255203.	2.8	18
42	In Focus: Plasma Medicine. Biointerphases, 2015, 10, 029301.	1.6	18
43	Fragment Ions of Methylsilane Produced by Hot Tungsten Wires. Japanese Journal of Applied Physics, 2006, 45, 1813-1815.	1.5	17
44	Molecular dynamics simulation of silicon oxidation enhanced by energetic hydrogen ion irradiation. Journal Physics D: Applied Physics, 2015, 48, 152002.	2.8	17
45	Surface damage formation during atomic layer etching of silicon with chlorine adsorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	17
46	Numerical analyses of surface interactions between radical beams and organic polymer surfaces. Plasma Physics and Controlled Fusion, 2005, 47, A11-A18.	2.1	16
47	Si Damage Due to Oblique-Angle Ion Impact Relevant for Vertical Gate Etching Processes. Japanese Journal of Applied Physics, 2012, 51, 08HB01.	1.5	16
48	New fluid model for the turbulent transport due to the ion temperature gradient. Physics of Fluids B, 1993, 5, 1516-1522.	1.7	15
49	Molecular dynamic simulation of damage formation at Si vertical walls by grazing incidence of energetic ions in gate etching processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	15
50	Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	15
51	Mechanism of SiN etching rate fluctuation in atomic layer etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	15
52	Si Recess of Polycrystalline Silicon Gate Etching: Damage Enhanced by Ion Assisted Oxygen Diffusion. Japanese Journal of Applied Physics, 2011, 50, 08KD02.	1.5	15
53	Molecular Dynamics Simulations of Organic Polymer Dry Etching at High Substrate Temperatures. Japanese Journal of Applied Physics, 2007, 46, 1692-1699.	1.5	14
54	Sputtering Yields of CaO, SrO, and BaO by Monochromatic Noble Gas Ion Bombardment. Japanese Journal of Applied Physics, 2012, 51, 08HB02.	1.5	14

#	Article	IF	CITATIONS
55	Molecular dynamics study on fluorine radical multilayer adsorption mechanism during Si, SiO ₂ , and Si ₃ N ₄ etching processes. Japanese Journal of Applied Physics, 2016, 55, 116204.	1.5	14
56	Effects of hydrogen ion irradiation on zinc oxide etching. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	13
57	Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer. Japanese Journal of Applied Physics, 2018, 57, 06JB02.	1.5	13
58	Ion temperature gradient driven turbulence in the weak density gradient limit. Physics of Fluids B, 1990, 2, 3040-3046.	1.7	12
59	Analysis of a kinematic model for ion transport in rf plasma sheaths. Physical Review A, 1992, 45, 5913-5928.	2.5	12
60	Synthesis of Uniformly Dispersed Metal Nanoparticles with Dispersion Stability by Nonequilibrium Atmospheric Plasma Jets. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 229-233.	0.3	12
61	Improvement of Hydrophilicity of Interconnected Porous Hydroxyapatite by Dielectric Barrier Discharge Plasma Treatment. IEEE Transactions on Plasma Science, 2011, 39, 2166-2167.	1.3	12
62	Mass Spectrometry Analyses of Ions Generated by Atmospheric-Pressure Plasma Jets in Ambient Air. Plasma Medicine, 2015, 5, 283-298.	0.6	12
63	Formation and desorption of nickel hexafluoroacetylacetonate Ni(hfac)2 on a nickel oxide surface in atomic layer etching processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	12
64	Experimental and numerical analysis of the effects of ion bombardment in silicon oxide (SiO ₂) plasma enhanced atomic layer deposition (PEALD) processes. Japanese Journal of Applied Physics, 2020, 59, SJJA01.	1.5	12
65	On-wafer monitoring and control of ion energy distribution for damage minimization in atomic layer etching processes. Japanese Journal of Applied Physics, 2020, 59, SJJC01.	1.5	12
66	Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature. Journal Physics D: Applied Physics, 2014, 47, 445402.	2.8	11
67	Correlation between dry etching resistance of Ta masks and the oxidation states of the surface oxide layers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 051810.	1.2	11
68	Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation. Journal Physics D: Applied Physics, 2016, 49, 165401.	2.8	11
69	Etching yields and surface reactions of amorphous carbon by fluorocarbon ion irradiation. Japanese Journal of Applied Physics, 2017, 56, 06HB09.	1.5	11
70	Effects of hydrogen-damaged layer on tin-doped indium oxide etching by H ₂ /Ar plasma. Japanese Journal of Applied Physics, 2017, 56, 06HD02.	1.5	11
71	Stability of hexafluoroacetylacetone molecules on metallic and oxidized nickel surfaces in atomic-layer-etching processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 022610.	2.1	10
72	Numerical analyses of hydrogen plasma generation by nanosecond pulsed high voltages at near-atmospheric pressure. Journal Physics D: Applied Physics, 2011, 44, 375201.	2.8	9

#	Article	IF	CITATIONS
73	Si Recess of Polycrystalline Silicon Gate Etching: Damage Enhanced by Ion Assisted Oxygen Diffusion. Japanese Journal of Applied Physics, 2011, 50, 08KD02.	1.5	9
74	Sputtering yields of magnesium hydroxide [Mg(OH) ₂] by noble-gas ion bombardment. Journal Physics D: Applied Physics, 2012, 45, 432001.	2.8	9
75	Mass-selected ion beam study on etching characteristics of ZnO by methane-based plasma. Japanese Journal of Applied Physics, 2016, 55, 021202.	1.5	9
76	Molecular dynamics simulation for reactive ion etching of Si and SiO2 by SF5+ ions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	9
77	Molecular dynamics simulation of amine groups formation during plasma processing of polystyrene surfaces. Plasma Sources Science and Technology, 2020, 29, 105020.	3.1	9
78	Si Damage Due to Oblique-Angle Ion Impact Relevant for Vertical Gate Etching Processes. Japanese Journal of Applied Physics, 2012, 51, 08HB01.	1.5	8
79	Oxidation of nitric oxide by atmospheric pressure plasma in a resonant plasma reactor. Journal Physics D: Applied Physics, 2013, 46, 135202.	2.8	8
80	Enhanced etching of tin-doped indium oxide due to surface modification by hydrogen ion injection. Japanese Journal of Applied Physics, 2018, 57, 06JC05.	1.5	8
81	Effects of excitation voltage pulse shape on the characteristics of atmospheric-pressure nanosecond discharges. Plasma Sources Science and Technology, 2019, 28, 075004.	3.1	8
82	Numerical Analysis of Incident Angle Effects in Reactive Sputtering Deposition of Amorphous SiO2. Japanese Journal of Applied Physics, 2006, 45, 8163-8167.	1.5	7
83	Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication. Applied Surface Science, 2013, 276, 1-6.	6.1	7
84	Generation of Free Radicals in Liquid by Atmospheric-Pressure Plasmas and its Application to Biology and Medicine. , 2014, , .		7
85	Self-limiting processes in thermal atomic layer etching of nickel by hexafluoroacetylacetone. Japanese Journal of Applied Physics, 2020, 59, 090905.	1.5	7
86	Resistive Drift-Alfvén Instability in a Cylindrical Plasma. Journal of the Physical Society of Japan, 2000, 69, 1401-1408.	1.6	6
87	Nonlinear behaviour of resistive drift-Alfv\$eacute\$n instabilities in a magnetized cylindrical plasma. Plasma Physics and Controlled Fusion, 2002, 44, 1689-1705.	2.1	6
88	Nonlinear evolution of the m=1 internal kink mode in the presence of magnetohydrodynamic turbulence. Physics of Plasmas, 2006, 13, 032506.	1.9	6
89	Molecular dynamics simulation of microcrystalline Si deposition processes by silane plasmas. Thin Solid Films, 2008, 516, 3443-3448.	1.8	6
90	Molecular dynamics simulations for nitridation of organic polymer surfaces due to hydrogen–nitrogen ion beam injections. Thin Solid Films, 2008, 516, 3449-3453.	1.8	6

#	Article	IF	CITATIONS
91	Structure of laboratory ball lightning. Physical Review E, 2009, 80, 067401.	2.1	6
92	Nonequilibrium Atmospheric Plasma Jets Assisted Stabilization of Drug Delivery Carriers: Preparation and Characterization of Biodegradable Polymeric Nano-Micelles with Enhanced Stability. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 467-471.	0.3	6
93	Reverse Propagation of Atmospheric Pressure Plasma Jets. Japanese Journal of Applied Physics, 2010, 49, 100209.	1.5	6
94	Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance. Journal Physics D: Applied Physics, 2012, 45, 372001.	2.8	6
95	Damage recovery and lowâ€damage etching of ITO in H 2 /CO plasma: Effects of hydrogen or oxygen. Plasma Processes and Polymers, 2019, 16, 1900029.	3.0	6
96	Modeling characterisation of a bipolar pulsed discharge. Plasma Sources Science and Technology, 2020, 29, 104001.	3.1	6
97	Inter- and Intraspecific Variation in Sex Hormone-Induced Sex-Reversal in Medaka, Oryzias latipes and Oryzias sakaizumii. Zoological Science, 2019, 36, 425.	0.7	6
98	Nonlinear Double Tearing Mode in Negative Shear Cylindrical Tokamaks. Journal of the Physical Society of Japan, 2001, 70, 2578-2587.	1.6	5
99	Temporal Evolution of Ion Fragment Production from Dimethylsilane by a Hot Tungsten Wire and Compounds Deposited on the Tungsten Surface. Japanese Journal of Applied Physics, 2007, 46, 1707-1709.	1.5	5
100	Plasma-surface Interactions in Material Processing. Journal of Physics: Conference Series, 2010, 257, 012007.	0.4	5
101	Quantum cascade laser absorption spectroscopy with the amplitude-to-time conversion technique for atmospheric-pressure plasmas. Journal of Applied Physics, 2013, 113, 213101.	2.5	5
102	Evaluation of nickel self-sputtering yields by molecular-dynamics simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
103	Sputtering Yields of CaO, SrO, and BaO by Monochromatic Noble Gas Ion Bombardment. Japanese Journal of Applied Physics, 2012, 51, 08HB02.	1.5	5
104	Five-step plasma-enhanced atomic layer etching of silicon nitride with a stable etched amount per cycle. Japanese Journal of Applied Physics, 2022, 61, 066002.	1.5	5
105	Roles of the reaction boundary layer and long diffusion of stable reactive nitrogen species (RNS) in plasma-irradiated water as an oxidizing media — numerical simulation study. Japanese Journal of Applied Physics, 2022, 61, 076002.	1.5	5
106	Atomic-level simulation of non-equilibrium surface chemical reactions under plasma-wall interaction. Computer Physics Communications, 2007, 177, 108-109.	7.5	4
107	Design of Biointerface by Nonequilibrium Atmospheric Plasma Jets-Approach from Plasma Susceptible Polymers Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 267-270.	0.3	4
108	Dynamics of Near-Atmospheric-Pressure Hydrogen Plasmas Driven by Pulsed High Voltages. IEEE Transactions on Plasma Science, 2011, 39, 2100-2101.	1.3	4

#	Article	IF	CITATIONS
109	Micro-pattern formation of extracellular matrix (ECM) layers by atmospheric-pressure plasmas and cell culture on the patterned ECMs. Journal Physics D: Applied Physics, 2011, 44, 482002.	2.8	4
110	Amine modification of calcium phosphate by low-pressure plasma for bone regeneration. Scientific Reports, 2021, 11, 17870.	3.3	4
111	Self-sputtering of the Lennard–Jones crystal. Physics of Plasmas, 2022, 29, 023507.	1.9	4
112	Creation of Biointerface by Atmospheric Plasma Treatment of Plasma Sensitive Polymeric Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 481-484.	0.3	3
113	Microcavity array plasma system for remote chemical processing at atmospheric pressure. Journal Physics D: Applied Physics, 2012, 45, 222001.	2.8	3
114	Monitoring of nonthermal plasma degradation of phthalates by ion mobility spectrometry. Plasma Processes and Polymers, 2021, 18, 2100032.	3.0	3
115	Why are physical sputtering yields similar for incident ions with different masses?—physical sputtering yields of the Lennard–Jones system. Journal Physics D: Applied Physics, 2022, 55, 225209.	2.8	3
116	Nonlinear behavior of magnetohydrodynamic modes near marginally stable states. II. Application to the resistive fast interchange mode. Physics of Fluids B, 1990, 2, 1184-1189.	1.7	2
117	å‰ç§å°"ã,'é‡ç•³ã⊷㟠CF3 ã,≋ªãf³ãf"ãf¼ãfã«ã,^ã,< SiO2 ã,¨ãffãfãfãf³ã,°çŽ‡ã®æ,¬å®š. Journal of the Vacu	um &a ciet	y oʻzJapan, 20
118	Preface to Special Topic: Invited Papers from the 2nd International Conference on Data-Driven Plasma Science. Physics of Plasmas, 2021, 28, .	1.9	2
119	Hydrogen Plasma Exposure of Polymethylmethacrylate and Etching by Low Energy Ar+ Ion Beam. Journal of the Vacuum Society of Japan, 2013, 56, 129-132.	0.3	2
120	Structural and electrical characteristics of ion-induced Si damage during atomic layer etching. Japanese Journal of Applied Physics, 2022, 61, SI1003.	1.5	2
121	Comparison between Double-Resonant and Non-Resonant Mode Driven Convections in a Stellarator with a Non-Monotonic Rotational Transform. Journal of the Physical Society of Japan, 2001, 70, 983-987.	1.6	1
122	Shear flow generation due to electromagnetic instabilities. Nuclear Fusion, 2003, 43, 63-67.	3.5	1
123	Time evolution of electrode voltage distribution in large-area capacitively coupled plasmas. Thin Solid Films, 2007, 515, 5188-5192.	1.8	1
124	Magnetized microdischarge plasma generation at low pressure. Thin Solid Films, 2008, 516, 6668-6672.	1.8	1
125	Facile Creation of Biointerface on Commodity Plastic Surface by Combination of Atmospheric Plasma and Reactive Polymer Coating. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 579-583.	0.3	1
126	Molecular dynamics simulation study on sputtering of graphite or amorphous carbon by low-energy hydrogen or its isotope ion beams. , 2010, , .		1

#	Article	IF	CITATIONS
127	Indium Implantation onto Zeolite for Development of Novel Catalysts with a Ion Beam System. Journal of Smart Processing, 2015, 4, 228-233.	0.1	1
128	Preface: Sixth International Conference on Plasma Medicine (ICPM-6). Plasma Medicine, 2017, 7, v-vi.	0.6	1
129	Molybdenum Capping Layer Effect on Electromigration Failure of Plasma Etched Copper Lines. ECS Transactions, 2019, 92, 39-46.	0.5	1
130	Plasma Current Effects on Unstable Resistive Drift-Alfvén Modes in a Magnetized Cylindrical Plasma. Journal of the Physical Society of Japan, 2001, 70, 3197-3200.	1.6	1
131	Advances in Dusty Plasmas. Strongly Coupled Dusty Plasmas Journal of Plasma and Fusion Research, 2002, 78, 313-319.	0.4	1
132	Surface Reactions of Plasma assisted Atomic Layer Etching for Silicon. Vacuum and Surface Science, 2020, 63, 616-622.	0.1	1
133	Helically Assisted Low-qTokamak withl=2 Helical Winding. Japanese Journal of Applied Physics, 1984, 23, L505-L508.	1.5	Ο
134	Selective Acceleration of NBI-injected Fast Ions by Ion Cyclotron Wave in a Tokamak Plasma. Japanese Journal of Applied Physics, 1986, 25, 1045-1048.	1.5	0
135	Effect of poloidal shear flow on local flattening of density profile due to nonlinear resistive interchange mode. Plasma Physics and Controlled Fusion, 2002, 44, A507-A515.	2.1	Ο
136	Atomic-Scale Analyses of Non-Equilibrium Surface Reactions During Plasma Processing. ECS Transactions, 2007, 8, 185-190.	0.5	0
137	Nonlinear Evolution of Pressure Gradient Driven Modes and Anomalous Transport in Plasmas. AIP Conference Proceedings, 2008, , .	0.4	0
138	伎ã,¨ãfãf«ã,®ãf¼è³ªé‡ů^†é›¢ã,¤ãf³ãf"ãf¼ãfç§å°"è£ç½®ã,`用ã,㟠SiO2/Si 基æ¿ãã®ã,¤f³ã,ã,¦ãfã,Ł	ă, ªã ∲ 3æ³"å	¥oJournal of
139	Low Energy Indium or Gallium Ion Implantations to SiO ₂ Thin Films for Development of Novel Catalysts. E-Journal of Surface Science and Nanotechnology, 2014, 12, 197-202.	0.4	Ο
140	Numerical Simulation of Atomic Layer Oxidation of Silicon by Oxygen Gas Cluster Beams. Plasma and Fusion Research, 2015, 10, 1406079-1406079.	0.7	0
141	Generation and transport of liquid-phase reactive species due to plasma-liquid interaction. , 2016, , .		Ο
142	Editorial for achieving atomistic control in plasma–material interactions. Journal Physics D: Applied Physics, 2017, 50, 490201.	2.8	0
143	Preface: Plasma Sources for Biological and Biomaterial Applications. Plasma Medicine, 2018, 8, v.	0.6	0
144	Development of a Massively Parallelized Fluid-Based Plasma Simulation Code With a Finite-Volume Method on an Unstructured Grid. IEEE Transactions on Plasma Science, 2021, 49, 104-119.	1.3	0

#	Article	IF	CITATIONS
145	Effects of Ultraviolet Light Irradiation on Etching of Polymethylmethacrylate by CF3+ Ion Beam Injections. Journal of the Vacuum Society of Japan, 2009, 52, 127-130.	0.3	0
146	Arrangement of PC12 Cells on a Silicon Chip via Extracellular Matrix (ECM) Layer Patterning by Atmospheric Pressure Plasmas. Plasma and Fusion Research, 2011, 6, 1306155-1306155.	0.7	0
147	Low-energy ion irradiation effects on chlorine desorption in plasma-enhanced atomic layer deposition (PEALD) for silicon nitride. Japanese Journal of Applied Physics, 0, , .	1.5	0