Bradley J Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/756373/publications.pdf

Version: 2024-02-01

80 papers 4,819 citations

94433 37 h-index 102487 66 g-index

82 all docs

82 docs citations

times ranked

82

6689 citing authors

#	Article	IF	CITATIONS
1	TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell, 2020, 183, 636-649.e18.	28.9	453
2	Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Progress in Neurobiology, 2008, 85, 94-134.	5.7	435
3	Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3620-3625.	7.1	373
4	Induction of the Unfolded Protein Response in Familial Amyotrophic Lateral Sclerosis and Association of Protein-disulfide Isomerase with Superoxide Dismutase 1. Journal of Biological Chemistry, 2006, 281, 30152-30165.	3.4	252
5	Impaired Extracellular Secretion of Mutant Superoxide Dismutase 1 Associates with Neurotoxicity in Familial Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2005, 25, 108-117.	3.6	175
6	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Cell Biology, 2013, 203, 345-357.	5. 2	166
7	Oral Treatment with Cull(atsm) Increases Mutant SOD1 In Vivo but Protects Motor Neurons and Improves the Phenotype of a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2014, 34, 8021-8031.	3.6	161
8	Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology, 2017, 81, 355-368.	5 . 3	157
9	ALS-Associated TDP-43 Induces Endoplasmic Reticulum Stress, Which Drives Cytoplasmic TDP-43 Accumulation and Stress Granule Formation. PLoS ONE, 2013, 8, e81170.	2.5	141
10	The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nature Communications, 2015, 6, 6048.	12.8	128
11	Diacetylbis(N(4)-methylthiosemicarbazonato) Copper(II) (Cull(atsm)) Protects against Peroxynitrite-induced Nitrosative Damage and Prolongs Survival in Amyotrophic Lateral Sclerosis Mouse Model. Journal of Biological Chemistry, 2011, 286, 44035-44044.	3.4	123
12	Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 681.	9.0	120
13	SYT1-associated neurodevelopmental disorder: a case series. Brain, 2018, 141, 2576-2591.	7.6	98
14	Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. Journal of Neurochemistry, 2003, 87, 752-763.	3.9	91
15	Disease Mechanisms in ALS: Misfolded SOD1 Transferred Through Exosome-Dependent and Exosome-Independent Pathways. Cellular and Molecular Neurobiology, 2016, 36, 377-381.	3.3	80
16	Dysregulation of the complement cascade in the hSOD1G93Atransgenic mouse model of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2013, 10, 119.	7.2	76
17	SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Molecular Neurodegeneration, 2015, 10, 57.	10.8	68
18	Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy, 2018, 14, 534-551.	9.1	66

#	Article	IF	CITATIONS
19	Ferroptosis mediates selective motor neuron death in amyotrophic lateral sclerosis. Cell Death and Differentiation, 2022, 29, 1187-1198.	11.2	63
20	Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiology of Disease, 2009, 34, 511-517.	4.4	62
21	TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Human Molecular Genetics, 2017, 26, 1732-1746.	2.9	62
22	Mutant <scp>SOD</scp> 1 inhibits <scp>ER</scp> â€Golgi transport in amyotrophic lateral sclerosis. Journal of Neurochemistry, 2014, 129, 190-204.	3.9	61
23	Antisense peptide nucleic acid targeting GluR3 delays disease onset and progression in the SOD1 G93A mouse model of familial ALS. Journal of Neuroscience Research, 2004, 77, 573-582.	2.9	59
24	Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Science Translational Medicine, 2021, 13, .	12.4	58
25	Synapse Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies. Cerebral Cortex, 2017, 27, 3630-3647.	2.9	56
26	Necroptosis is dispensable for motor neuron degeneration in a mouse model of ALS. Cell Death and Differentiation, 2020, 27, 1728-1739.	11.2	56
27	ER Stress and UPR in Familial Amyotrophic Lateral Sclerosis. Current Molecular Medicine, 2006, 6, 79-86.	1.3	55
28	TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neuroscience, 2008, 9, 104.	1.9	55
29	Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice. Human Molecular Genetics, 2010, 19, 815-824.	2.9	52
30	Effect of p75 neurotrophin receptor antagonist on disease progression in transgenic amyotrophic lateral sclerosis mice. Journal of Neuroscience Research, 2004, 78, 193-199.	2.9	51
31	HspB8 mutation causing hereditary distal motor neuropathy impairs lysosomal delivery of autophagosomes. Journal of Neurochemistry, 2011, 119, 1155-1161.	3.9	49
32	Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Human Molecular Genetics, 2015, 24, 1655-1669.	2.9	48
33	Mutant TDP-43 Deregulates AMPK Activation by PP2A in ALS Models. PLoS ONE, 2014, 9, e90449.	2.5	46
34	Neuromuscular accumulation of mutant superoxide dismutase 1 aggregates in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience Letters, 2003, 350, 132-136.	2.1	43
35	Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells, 2020, 9, 2413.	4.1	41
36	Misfolded Polyglutamine, Polyalanine, and Superoxide Dismutase 1 Aggregate via Distinct Pathways in the Cell. Journal of Biological Chemistry, 2014, 289, 6669-6680.	3.4	39

#	Article	IF	CITATIONS
37	Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice. Neurobiology of Aging, 2014, 35, 906-915.	3.1	39
38	AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis. Neurochemical Research, 2016, 41, 544-553.	3.3	39
39	Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine. FEBS Journal, 2002, 269, 3014-3022.	0.2	38
40	Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1G93A G1H mouse model of familial amyotrophic lateral sclerosis. Brain Research, 2003, 982, 92-97.	2.2	38
41	Opposing effects of low and high-dose clozapine on survival of transgenic amyotrophic lateral sclerosis mice. Journal of Neuroscience Research, 2003, 74, 605-613.	2.9	33
42	The beta-amyloid peptide of Alzheimer's disease decreases adhesion of vascular smooth muscle cells to the basement membrane. Journal of Neurochemistry, 2006, 96, 53-64.	3.9	30
43	Characterization of the Stability and Bio-functionality of Tethered Proteins on Bioengineered Scaffolds. Journal of Biological Chemistry, 2014, 289, 15044-15051.	3.4	29
44	Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Seminars in Cell and Developmental Biology, 2021, 112, 82-91.	5.0	28
45	Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscular Disorders, 2010, 20, 260-266.	0.6	27
46	Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 87-99.	3.4	26
47	Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neuroscience Letters, 2021, 759, 136039.	2.1	24
48	Inhibition of motor neuron death <i>in vitro</i> and <i>in vivo</i> by a p75 neurotrophin receptor intracellular domain fragment. Journal of Cell Science, 2016, 129, 517-30.	2.0	23
49	The P2X7 receptor antagonist JNJ-47965567 administered thrice weekly from disease onset does not alter progression of amyotrophic lateral sclerosis in SOD1G93A mice. Purinergic Signalling, 2020, 16, 109-122.	2.2	23
50	Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice. Human Molecular Genetics, 2016, 25, 4080-4093.	2.9	22
51	Thiol-Cyanobenzothiazole Ligation for the Efficient Preparation of Peptide–PNA Conjugates. Bioconjugate Chemistry, 2019, 30, 793-799.	3.6	20
52	Androgen receptor antagonism accelerates disease onset in the SOD1 ^{G93A} mouse model of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2019, 176, 2111-2130.	5.4	19
53	Application of Urine-Derived Stem Cells to Cellular Modeling in Neuromuscular and Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2019, 12, 297.	2.9	19
54	Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochemistry International, 2017, 108, 213-221.	3.8	17

#	Article	IF	Citations
55	Co-regulation of survival of motor neuron and Bcl-xL expression: Implications for neuroprotection in spinal muscular atrophy. Neuroscience, 2012, 220, 228-236.	2.3	15
56	Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. Journal of Neuroinflammation, 2015, 12, 40.	7.2	15
57	Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34Âcells. Neurochemistry International, 2018, 112, 278-287.	3.8	15
58	Brain ?-Amyloid Accumulation in Transgenic Mice Expressing Mutant Superoxide Dismutase 1. Neurochemical Research, 2004, 29, 2281-2286.	3.3	13
59	Stimulation of mTOR-independent autophagy and mitophagy by rilmenidine exacerbates the phenotype of transgenic TDP-43 mice. Neurobiology of Disease, 2021, 154, 105359.	4.4	13
60	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	8.2	12
61	Dysregulation of Steroid Hormone Receptors in Motor Neurons and Glia Associates with Disease Progression in ALS Mice. Endocrinology, 2020, 161, .	2.8	11
62	Inducible superoxide dismutase 1 aggregation in transgenic amyotrophic lateral sclerosis mouse fibroblasts. Journal of Cellular Biochemistry, 2004, 91, 1074-1084.	2.6	10
63	Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides. International Journal of Pharmaceutics, 2021, 599, 120398.	5.2	10
64	The Amyotrophic Lateral Sclerosis M114T PFN1 Mutation Deregulates Alternative Autophagy Pathways and Mitochondrial Homeostasis. International Journal of Molecular Sciences, 2022, 23, 5694.	4.1	10
65	Could an Impairment in Local Translation of mRNAs in Glia be Contributing to Pathogenesis in ALS?. Frontiers in Molecular Neuroscience, 2019, 12, 124.	2.9	9
66	Modular Synthesis of Trifunctional Peptide-oligonucleotide Conjugates via Native Chemical Ligation. Frontiers in Chemistry, 2021, 9, 627329.	3.6	9
67	Mutant TDP-43 Expression Triggers TDP-43 Pathology and Cell Autonomous Effects on Primary Astrocytes: Implications for Non-cell Autonomous Pathology in ALS. Neurochemical Research, 2020, 45, 1451-1459.	3.3	7
68	Design and application of a peptide nucleic acid sequence targeting the p75 neurotrophin receptor. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2377-2380.	2.2	5
69	Chemotherapy Delays Progression of Motor Neuron Disease in the SOD1 G93A Transgenic Mouse. Chemotherapy, 2004, 50, 138-142.	1.6	5
70	Alzheimer's Disease Therapeutics: New Approaches to an Ageing Problem. IUBMB Life, 2004, 56, 203-208.	3.4	5
71	<i>GAL</i> _{<i>3</i>} receptor knockout mice exhibit an alcoholâ€preferring phenotype. Addiction Biology, 2019, 24, 886-897.	2.6	5
72	Lipid Metabolism Is Dysregulated in the Motor Cortex White Matter in Amyotrophic Lateral Sclerosis. Metabolites, 2022, 12, 554.	2.9	5

#	Article	IF	CITATIONS
73	Exploring germline recombination inNestinâ€Cretransgenic mice using floxed androgen receptor. Genesis, 2020, 58, e23390.	1.6	4
74	The Assembly of Fluorescently Labeled Peptide–Oligonucleotide Conjugates via Orthogonal Ligation Strategies. Methods in Molecular Biology, 2018, 1828, 355-363.	0.9	3
75	Dissociation of disease onset, progression and sex differences from androgen receptor levels in a mouse model of amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 9255.	3.3	3
76	Mapping Motor Neuron Vulnerability in the Neuraxis of Male SOD1G93A Mice Reveals Widespread Loss of Androgen Receptor Occurring Early in Spinal Motor Neurons. Frontiers in Endocrinology, 2022, 13, 808479.	3.5	3
77	Metabolic Dysfunction in Motor Neuron Disease: Shedding Light through the Lens of Autophagy. Metabolites, 2022, 12, 574.	2.9	2
78	The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. Journal of Experimental Medicine, 2013, 210, 21012OIA54.	8.5	1
79	AMPA receptor and RNA processing gene dysregulation are early determinants of selective motor neuron vulnerability in a mouse model of amyotrophic lateral sclerosis. Brain Communications, 2022, 4, fcac081.	3.3	1
80	Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis. Brain Sciences, 2021, 11, 1112.	2.3	0