Taolin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7563512/publications.pdf

Version: 2024-02-01

567281 677142 25 993 15 22 citations h-index g-index papers 25 25 25 1430 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Controllable preparation of Fe-containing Li-rich cathode material Li[Li1/5Fe1/10Ni3/20Mn11/20]O2 with stable high-rate properties for Li-ion batteries. Functional Materials Letters, 2021, 14, 2150004.	1.2	7
2	Effects of lithium source and electrochemical window on the properties of Li1.2Fe0.16Ni0.24Mn0.4O2 cathode material prepared by oxalate co-precipitation method. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	1
3	Optimization mechanism of Li2ZrO3-modified lithium-rich cathode material Li[Li0.2Ni0.2Mn0.6]O2 for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 8603-8614.	2.2	4
4	Beneficial effect of green water-soluble binders on SiOx/graphite anode for lithium-ion batteries. Chemical Physics Letters, 2020, 742, 137145.	2.6	19
5	Distinctive electrochemical performance of novel Fe-based Li-rich cathode material prepared by molten salt method for lithium-ion batteries. Journal of Energy Chemistry, 2019, 33, 37-45.	12.9	23
6	The role of precipitant in the preparation of lithium-rich manganese-based cathode materials. Chemical Physics Letters, 2019, 730, 354-360.	2.6	17
7	Maintaining structure and voltage stability of Li-rich cathode materials by green water-soluble binders containing Na+ ions. Journal of Alloys and Compounds, 2019, 811, 152060.	5.5	26
8	Preparation Mechanism and Properties of Orthoboric Acid Nanowires with Honeycomb-Like Structure. Journal of Nanoscience and Nanotechnology, 2019, 19, 5928-5931.	0.9	0
9	In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries. Journal of Materials Science, 2019, 54, 9098-9110.	3.7	12
10	Electrochemical activation of novel Fe-based Li-rich cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 741, 597-603.	5 . 5	11
11	Au Nanorod/ZnO Core–Shell Nanoparticles as Nano-Photosensitizers for Near-Infrared Light-Induced Singlet Oxygen Generation. Journal of Physical Chemistry C, 2018, 122, 7824-7830.	3.1	32
12	Three-dimensional Li1.2Ni0.2Mn0.6O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 757, 16-23.	5 . 5	19
13	Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries. ACS Omega, 2017, 2, 5601-5610.	3.5	28
14	Constructing heterostructured Li–Fe–Ni–Mn–O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage. Physical Chemistry Chemical Physics, 2017, 19, 22494-22501.	2.8	3
15	Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale Horizons, 2016, 1, 423-444.	8.0	119
16	Surface modification of a cobalt-free layered Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ oxide with the FePO ₄ /Li ₃ PO ₄ composite as the cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9528-9537.	10.3	36
17	Multifunctional AlPO ₄ Coating for Improving Electrochemical Properties of Low-Cost Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3773-3781.	8.0	189
18	Hierarchical mesoporous/macroporous Co ₃ O ₄ ultrathin nanosheets as free-standing catalysts for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 17620-17626.	10.3	54

TAOLIN ZHAO

#	Article	IF	CITATION
19	Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.	16.0	162
20	The Positive Roles of Integrated Layered-Spinel Structures Combined with Nanocoating in Low-Cost Li-Rich Cathode Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21711-21720.	8.0	62
21	Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for Lithium–lon Battery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22305-22315.	8.0	31
22	The effect of chromium substitution on improving electrochemical performance of low-cost Fe–Mn based Li-rich layered oxide as cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 245, 898-907.	7.8	36
23	Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. Journal of Power Sources, 2013, 228, 206-213.	7.8	97
24	Lithium storage properties of Li2MoO3 and its effect as a cathode additive in full cells. Functional Materials Letters, 0 , \cdot .	1.2	4
25	Construction of high-performance Li-rich Mn-based cathodes assisted by a novel water-soluble LiPAA binder. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	1