List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562503/publications.pdf Version: 2024-02-01

	101543	144013
4,216	36	57
citations	h-index	g-index
132	132	5988
docs citations	times ranked	citing authors
	citations 132	4,216 36 citations h-index 132 132

LIDONCLI

#	Article	IF	CITATIONS
1	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie - International Edition, 2016, 55, 3672-3676.	13.8	233
2	Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor. ACS Applied Materials & Interfaces, 2020, 12, 1558-1566.	8.0	174
3	Preparation of Bimetallic Nanoparticles Using a Facile Green Synthesis Method and Their Application. Langmuir, 2013, 29, 4901-4907.	3.5	157
4	Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties. ACS Applied Materials & Interfaces, 2017, 9, 20895-20903.	8.0	136
5	Rapid Flu Diagnosis Using Silicon Nanowire Sensor. Nano Letters, 2012, 12, 3722-3730.	9.1	135
6	Self-Assembly of Conjugated Polymer-Ag@SiO ₂ Hybrid Fluorescent Nanoparticles for Application to Cellular Imaging. Langmuir, 2010, 26, 11774-11778.	3.5	109
7	Self-Assembly of Fluorescent Organic Nanoparticles for Iron(III) Sensing and Cellular Imaging. ACS Applied Materials & Interfaces, 2016, 8, 7440-7448.	8.0	109
8	Nanoparticles made of ï€-conjugated compounds targeted for chemical and biological applications. Chemical Communications, 2015, 51, 16733-16749.	4.1	91
9	Controllable metal-enhanced fluorescence in organized films and colloidal system. Advances in Colloid and Interface Science, 2014, 207, 164-177.	14.7	86
10	An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Labelâ€Free Protein Detection. Advanced Materials, 2015, 27, 6040-6045.	21.0	79
11	Preparation of Sialic Acid-Imprinted Fluorescent Conjugated Nanoparticles and Their Application for Targeted Cancer Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 3006-3015.	8.0	78
12	Ultrabright Fluorescent Silica Nanoparticles Embedded with Conjugated Oligomers and Their Application in Latent Fingerprint Detection. ACS Applied Materials & Interfaces, 2017, 9, 44134-44145.	8.0	74
13	Binding-Directed Energy Transfer of Conjugated Polymer Materials for Dual-Color Imaging of Cell Membrane. Chemistry of Materials, 2016, 28, 4661-4669.	6.7	65
14	Hybrid conjugated polymer-Ag@PNIPAM fluorescent nanoparticles with metal-enhanced fluorescence. Journal of Materials Chemistry, 2011, 21, 16943.	6.7	63
15	pH- and Glucose-Responsive Core–Shell Hybrid Nanoparticles with Controllable Metal-Enhanced Fluorescence Effects. ACS Applied Materials & Interfaces, 2012, 4, 1747-1751.	8.0	63
16	Control of Metal-Enhanced Fluorescence with pH- and Thermoresponsive Hybrid Microgels. Langmuir, 2012, 28, 883-888.	3.5	61
17	TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chemical Science, 2011, 2, 1860.	7.4	59
18	Fluorescent Organic Nanoparticles with Enhanced Fluorescence by Self-Aggregation and their Application to Cellular Imaging. ACS Applied Materials & Interfaces, 2014, 6, 18337-18343.	8.0	56

#	Article	IF	CITATIONS
19	Conjugated Polymer with Aggregation-Directed Intramolecular Förster Resonance Energy Transfer Enabling Efficient Discrimination and Killing of Microbial Pathogens. Chemistry of Materials, 2018, 30, 3244-3253.	6.7	55
20	New alkylthienyl substituted benzo[1,2-b:4,5-b′]dithiophene-based polymers for high performance solar cells. Journal of Materials Chemistry A, 2013, 1, 570-577.	10.3	54
21	Preparation of Hybrid Hydrogel Containing Ag Nanoparticles by a Green in Situ Reduction Method. Langmuir, 2012, 28, 11188-11194.	3.5	53
22	Preparation of gold nanostars and their study in selective catalytic reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 465, 20-25.	4.7	53
23	Gold Nanocluster-Decorated Nanocomposites with Enhanced Emission and Reactive Oxygen Species Generation. ACS Applied Materials & Interfaces, 2019, 11, 7369-7378.	8.0	53
24	Gold Nanoflower@Gelatin Core–Shell Nanoparticles Loaded with Conjugated Polymer Applied for Cellular Imaging. ACS Applied Materials & Interfaces, 2013, 5, 213-219.	8.0	52
25	Preparation of Novel Fluorescent Nanocomposites Based on Au Nanoclusters and Their Application in Targeted Detection of Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 44856-44863.	8.0	52
26	Conjugated Oligomer-Based Fluorescent Nanoparticles as Functional Nanocarriers for Nucleic Acids Delivery. ACS Applied Materials & Interfaces, 2013, 5, 5700-5708.	8.0	51
27	Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 11063-11071.	8.0	50
28	Controllable Targeted Accumulation of Fluorescent Conjugated Polymers on Bacteria Mediated by a Saccharide Bridge. Chemistry of Materials, 2020, 32, 438-447.	6.7	49
29	Preparation of Hybrid Gold/Polymer Nanocomposites and Their Application in a Controlled Antibacterial Assay. ACS Applied Materials & amp; Interfaces, 2016, 8, 29101-29109.	8.0	44
30	Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria. Advanced Materials Technologies, 2017, 2, 1700033.	5.8	43
31	Regulating the Optical Properties of Gold Nanoclusters for Biological Applications. ACS Omega, 2020, 5, 22702-22707.	3.5	43
32	Tunable Metalâ€Enhanced Fluorescence by Stimuliâ€Responsive Polyelectrolyte Interlayer Films. Macromolecular Rapid Communications, 2011, 32, 587-592.	3.9	40
33	Aqueous Systems with Tunable Fluorescence Including White-Light Emission for Anti-Counterfeiting Fluorescent Inks and Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 55269-55277.	8.0	39
34	Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence. Scientific Reports, 2014, 4, 4406.	3.3	36
35	A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams. Nanoscale, 2018, 10, 4675-4679.	5.6	36
36	Graphitic Carbon Nitride as a Distinct Solid Stabilizer for Emulsion Polymerization. Chemistry - A European Journal, 2018, 24, 2286-2291.	3.3	36

#	Article	IF	CITATIONS
37	Mild Synthesis of Copper Nanoparticles with Enhanced Oxidative Stability and Their Application in Antibacterial Films. Langmuir, 2018, 34, 14570-14576.	3.5	36
38	A benzo[1,2-b:4,5-bâ€2]difuran- and thieno-[3,4-b]thiophene-based low bandgap copolymer for photovoltaic applications. Polymer Chemistry, 2013, 4, 470-476.	3.9	35
39	Electrochemical and thermodynamic processes of metal nanoclusters enabled biorealistic synapses and leaky-integrate-and-fire neurons. Materials Horizons, 2020, 7, 71-81.	12.2	35
40	Waterâ€Soluble Conjugated Polymers for Amplified Fluorescence Detection of Templateâ€Independent DNA Elongation Catalyzed by Polymerase. Advanced Functional Materials, 2011, 21, 3143-3149.	14.9	33
41	Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal–semiconductor substrate. Nanoscale, 2017, 9, 2376-2384.	5.6	33
42	Photophysical properties of polyphenylphenyl compounds in aqueous solutions and application of their nanoparticles for nucleobase sensing. Journal of Materials Chemistry, 2008, 18, 2555.	6.7	32
43	Citrate-Induced Aggregation of Conjugated Polyelectrolytes for Al ³⁺ -lon-Sensing Assays. ACS Applied Materials & Interfaces, 2013, 5, 8254-8259.	8.0	32
44	Point Decoration of Silicon Nanowires: An Approach Toward Singleâ€Molecule Electrical Detection. Angewandte Chemie - International Edition, 2014, 53, 5038-5043.	13.8	32
45	Synthesis and characterization of arylamino end-capped silafluorenes for blue to deep-blue organic light-emitting diodes (OLEDs). Journal of Materials Chemistry C, 2015, 3, 6822-6830.	5.5	32
46	Aggregation-Induced Energy Transfer of Conjugated Polymer Materials for ATP Sensing. ACS Applied Materials & Interfaces, 2016, 8, 35578-35586.	8.0	32
47	Organic semiconductor memory devices based on a low-band gap polyfluorene derivative with isoindigo as electron-trapping moieties. Applied Physics Letters, 2011, 98, .	3.3	31
48	Phenylâ€Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior. Angewandte Chemie, 2016, 128, 3736-3740.	2.0	31
49	Fluorescence Resonance Energy Transfer in a Binary Organic Nanoparticle System and Its Application. ACS Applied Materials & Interfaces, 2015, 7, 8243-8250.	8.0	30
50	Flexible Antibacterial Film Based on Conjugated Polyelectrolyte/Silver Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 9051-9058.	8.0	30
51	A novel blue fluorescent polymer for solution-processed fluorescent–phosphorescent hybrid WOLEDs. Journal of Materials Chemistry C, 2015, 3, 2856-2864.	5.5	29
52	Free Radical Polymerization of Gold Nanoclusters and Hydrogels for Cell Capture and Light-Controlled Release. ACS Applied Materials & Interfaces, 2021, 13, 19360-19368.	8.0	29
53	Surface-Engineered Gold Nanoclusters with Biological Assembly-Amplified Emission for Multimode Imaging. Journal of Physical Chemistry Letters, 2019, 10, 5237-5243.	4.6	28
54	Near-Infrared Conjugated Oligomer for Effective Killing of Bacterial through Combination of Photodynamic and Photothermal Treatment. ACS Applied Bio Materials, 2020, 3, 1305-1311.	4.6	28

#	Article	IF	CITATIONS
55	A sky-blue fluorescent small molecule for non-doped OLED using solution-processing. RSC Advances, 2015, 5, 71419-71424.	3.6	27
56	Tunable Singleâ€Molecule White‣ight Emission in Stimuliâ€Responsive Hydrogel. Advanced Optical Materials, 2020, 8, 1901571.	7.3	27
57	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 43966-43974.	8.0	26
58	Facile synthesis of Ag@AgCl-contained cellulose hydrogels and their application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 618-623.	4.7	26
59	Red-emissive conjugated oligomer/silica hybrid nanoparticles with high affinity and application for latent fingerprint detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 565, 118-130.	4.7	26
60	Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 25077-25083.	8.0	25
61	Preparation of exciplex-based fluorescent organic nanoparticles and their application in cell imaging. RSC Advances, 2017, 7, 40842-40848.	3.6	25
62	Tuning analog resistive switching and plasticity in bilayer transition metal oxide based memristive synapses. RSC Advances, 2017, 7, 43132-43140.	3.6	25
63	AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs). ACS Applied Materials & Interfaces, 2015, 7, 28156-28165.	8.0	24
64	A Diaryletheneâ€Based Photoswitch and its Photomodulation of the Fluorescence of Conjugated Polymers. Chemistry - A European Journal, 2018, 24, 17756-17766.	3.3	24
65	Gold nanocluster grafted conjugated polymer nanoparticles for cancer cell imaging and photothermal killing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124764.	4.7	22
66	Exploring the application of conjugated polymer nanoparticles in chemical sensing: detection of free radicals by a synergy between fluorescent nanoparticles of two conjugated polymers. Journal of Materials Chemistry, 2011, 21, 18696.	6.7	21
67	Reversible pH-Responsive Fluorescence of Water-Soluble Polyfluorenes and Their Application in Metal Ion Detection. ACS Applied Materials & Interfaces, 2012, 4, 4927-4933.	8.0	21
68	Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process. Journal of Materials Chemistry C, 2014, 2, 5036.	5.5	21
69	Tunable fluorescence behaviors of a supramolecular system based on a fluorene derivative and cucurbit[8]uril and its application for ATP sensing. Physical Chemistry Chemical Physics, 2017, 19, 31306-31315.	2.8	21
70	Synthesis of photothermal nanocomposites and their application to antibacterial assays. Nanotechnology, 2018, 29, 175601.	2.6	21
71	Preparation of fluorescent nanocomposites based on gold nanoclusters self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 27-31.	4.7	20
72	Fluorescent Nanoparticles Synthesized by Carbon-Nitride-Stabilized Pickering Emulsion Polymerization for Targeted Cancer Cell Imaging. ACS Applied Bio Materials, 2019, 2, 5127-5135.	4.6	20

#	Article	IF	CITATIONS
73	Gelatin sponge functionalized with gold/silver clusters for antibacterial application. Nanotechnology, 2020, 31, 134004.	2.6	20
74	Antibacterial Activity of Porous Gold Nanocomposites via NIR Light-Triggered Photothermal and Photodynamic Effects. ACS Applied Bio Materials, 2021, 4, 5071-5079.	4.6	20
75	pH and thermoresponsive Ag/polyelectrolyte hybrid thin films for tunable metal-enhanced fluorescence. Journal of Materials Chemistry, 2012, 22, 8988.	6.7	19
76	Self-Assembly of Fluorescent Hybrid Core–Shell Nanoparticles and Their Application. ACS Applied Materials & Interfaces, 2015, 7, 13653-13658.	8.0	19
77	Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126970.	4.7	18
78	In Situ Synthesis of Gold Nanoclusters in Covalent Organic Frameworks with Enhanced Photodynamic Properties and Antibacterial Performance. ACS Applied Bio Materials, 2022, 5, 3115-3125.	4.6	18
79	Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS Applied Bio Materials, 2021, 4, 1211-1220.	4.6	17
80	Solution processed blue phosphorescent organic light emitting diodes using a Ge-based small molecular host. Journal of Materials Chemistry C, 2015, 3, 5017-5025.	5.5	16
81	Self-Assembled Nanocomposite Film with Tunable Enhanced Fluorescence for the Detection of DNA. ACS Applied Materials & Interfaces, 2015, 7, 1334-1339.	8.0	16
82	Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging. ACS Applied Bio Materials, 2021, 4, 2790-2797.	4.6	16
83	Optically amplified DNA detection on self-assembled solid films using conjugated polyelectrolytes. Journal of Materials Chemistry, 2012, 22, 15303.	6.7	15
84	Facile Preparation of Fluorescent Nanoparticles with Tunable Exciplex Emission and Their Application to Targeted Cellular Imaging. ACS Applied Bio Materials, 2018, 1, 185-192.	4.6	15
85	An air-stable microwire radial heterojunction with high photoconductivity based on a new building block. Journal of Materials Chemistry C, 2015, 3, 5933-5939.	5.5	14
86	Design, synthesis and characterization of a new blue phosphorescent Ir complex. Journal of Materials Chemistry C, 2015, 3, 8675-8683.	5.5	14
87	Solution-processed oxadiazole-based electron-transporting layer for white organic light-emitting diodes. RSC Advances, 2015, 5, 36568-36574.	3.6	14
88	Solutionâ€Processed Doubleâ€Layer Electronâ€Transport Layer for Conventional Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2016, 4, 1635-1641.	7.3	14
89	Co-precipitation method to prepare molecularly imprinted fluorescent polymer nanoparticles for paracetamol sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124342.	4.7	14
90	Self-Assembly of Conjugated Polymer on Hybrid Nanospheres for Cellular Imaging Applications. ACS Applied Materials & Interfaces, 2012, 4, 6332-6337.	8.0	13

#	Article	IF	CITATIONS
91	Organozinc Compounds as Effective Dielectric Modification Layers for Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2012, 22, 4139-4148.	14.9	12
92	Organic field-effect transistors with a low driving voltage using albumin as the dielectric layer. RSC Advances, 2014, 4, 58720-58723.	3.6	12
93	Intramolecular Charge Transfer-Based Conjugated Oligomer with Fluorescence, Efficient Photodynamics, and Photothermal Activities. ACS Applied Bio Materials, 2021, 4, 6565-6574.	4.6	12
94	Controlling the Interaction between Fluorescent Gold Nanoclusters and Biointerfaces for Rapid Discrimination of Fungal Pathogens. ACS Applied Materials & Interfaces, 2022, 14, 4532-4541.	8.0	11
95	Logic Control of Interfaceâ€Induced Chargeâ€Trapping Effect for Ultrasensitive Gas Detection with Allâ€Mirrorâ€Image Symmetry. Advanced Materials Technologies, 2016, 1, 1600067.	5.8	10
96	Organic nanoparticles with efficient and adjustable exciplex emission for biological imaging. Dyes and Pigments, 2019, 166, 416-421.	3.7	10
97	Conjugated Polymer-Functionalized Stretchable Supramolecular Hydrogels to Monitor and Control Cellular Behavior. ACS Applied Materials & Interfaces, 2022, 14, 12674-12683.	8.0	10
98	Internal Chemiluminescence Light-Driven Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 60471-60477.	8.0	10
99	Fluorescent Platforms Based on Organic Molecules for Chemical and Biological Detection. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800521.	2.4	9
100	Conjugated Oligomerâ€Ðirected Formation of Hollow Nanoparticles for Targeted Photokilling Cancer Cells under Hypoxia. Advanced Optical Materials, 2022, 10, .	7.3	9
101	Layer-by-layer stacked vanadium nitride nanocrystals/N-doped carbon hybrid nanosheets toward high-performance aqueous zinc-ion batteries. Nanoscale, 2022, 14, 7607-7612.	5.6	9
102	Synthesis, characterization, and application of a novel orange–red iridium(III) phosphor for solution-processed single emissive layer white organic light-emitting diodes. Synthetic Metals, 2014, 197, 90-98.	3.9	8
103	Frontispiece: Point Decoration of Silicon Nanowires: An Approach Toward Singleâ€Molecule Electrical Detection. Angewandte Chemie - International Edition, 2014, 53, .	13.8	8
104	Controlled fabrication of fluorescent Au@PAA nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 95-100.	4.7	8
105	Preparation of organic fluorescent nanocomposites and their application in DNA detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 72-77.	4.7	8
106	Controllable accumulation of conjugated polymer nanoparticles on the surface of adhesive bacteria. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124569.	4.7	8
107	Surface modification and shape adjustment of polymer semiconductor nanowires. Journal of Materials Chemistry, 2011, 21, 9626.	6.7	7
108	Revealing Conformational Transition Dynamics of Photosynthetic Proteins in Single-Molecule Electrical Circuits. Journal of Physical Chemistry Letters, 2021, 12, 3853-3859.	4.6	7

#	Article	IF	CITATIONS
109	Conjugated Molecule-Assisted Supramolecular Hydrogel with Enhanced Antibacterial and Antibiofouling Properties. ACS Applied Bio Materials, 2022, 5, 3107-3114.	4.6	7
110	Graphitic carbon nitride colloid as one photoinitiator for two-step polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129615.	4.7	7
111	Doping core–shell nanoparticles into a solution-processed electron transporting layer for polymer light-emitting diodes. RSC Advances, 2016, 6, 38148-38152.	3.6	6
112	Bi-layer hole-injecting layer composed of molybdenum oxide and polyelectrolyte for solution-processed OLEDs with prolonged stability. RSC Advances, 2016, 6, 100312-100317.	3.6	6
113	Investigation of Abnormal Longâ€Wavelength Fluorescence Emissions Occurring in Binary Organic Nanoparticle Films. Particle and Particle Systems Characterization, 2015, 32, 962-969.	2.3	5
114	Solution-processed organic light-emitting diodes with enhanced efficiency by using a non-conjugated polymer doped small-molecule hole-blocking layer. RSC Advances, 2015, 5, 98075-98079.	3.6	5
115	Preparation of optical functional composite films and their application in protein detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 69-74.	4.7	5
116	Preparation of conjugated polymer nanoparticles with white emission and their application for cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 389-397.	3.9	5
117	Dual-emitting nanocomposites for oxygen-carrying capacity analysis and boosted singlet oxygen generation in stored red blood cells. Dyes and Pigments, 2019, 171, 107751.	3.7	5
118	Direct mechano-sliding transfer of chemical vapor deposition grown silicon nanowires for nanoscale electronic devices. Journal of Materials Chemistry C, 2022, 10, 469-475.	5.5	5
119	An emission-tunable fluorescent organic molecule for specific cellular imaging. RSC Advances, 2016, 6, 77745-77751.	3.6	4
120	Preparation of silver nanoparticles decorated mesoporous silica nanorods with photothermal antibacterial property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129242.	4.7	4
121	Organic photodiodes constructed from a single radial heterojunction microwire. Journal of Materials Chemistry C, 2016, 4, 944-950.	5.5	3
122	Protein Detection: An Optical Nanoruler Based on a Conjugated Polymerâ^'Silver Nanoprism Pair for Label-Free Protein Detection (Adv. Mater. 39/2015). Advanced Materials, 2015, 27, 6039-6039.	21.0	2
123	A novel ternary organic microwire radial heterojunction with high photoconductivity. Journal of Materials Chemistry C, 2016, 4, 4505-4511.	5.5	2
124	Facile fabrication of an organic semiconductor/graphene microribbon heterojunction by self-assembly. RSC Advances, 2016, 6, 52878-52883.	3.6	2
125	A carbon dioxide responsive fluorescent system based on micellar transformation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128457.	4.7	2
126	Scalable Fabrication of Carbon-Networked Size-Tunable V ₂ O ₃ for Lithium Storage. ACS Applied Energy Materials, 2022, 5, 3757-3765.	5.1	2

#	Article	IF	CITATIONS
127	In situ Growth of Graphitic Carbon Nitride on Multiwalled Carbon Nanotubes for Interfacial Thermal Management. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129232.	4.7	1
128	Frontispiz: Point Decoration of Silicon Nanowires: An Approach Toward Single-Molecule Electrical Detection. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
129	Polyelectrolyteâ€6ilver Nanostructures: Conjugated Polyelectrolyte–Silver Nanostructure Pair for Detection and Killing of Bacteria (Adv. Mater. Technol. 7/2017). Advanced Materials Technologies, 2017, 2, .	5.8	0