Peter H St George-Hyslop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562260/publications.pdf

Version: 2024-02-01

271 papers

38,357 citations

84 h-index

4955

³³²¹ 184

283 all docs 283 docs citations

times ranked

283

37005 citing authors

g-index

#	Article	IF	Citations
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
2	<i>TREM2</i> Variants in Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 117-127.	13.9	2,385
3	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
4	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
5	AÎ ² peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature, 2000, 408, 979-982.	13.7	1,472
6	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
7	The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nature Genetics, 2007, 39, 168-177.	9.4	1,045
8	Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and \hat{I}^2 APP processing. Nature, 2000, 407, 48-54.	13.7	895
9	Early-onset Amyloid Deposition and Cognitive Deficits in Transgenic Mice Expressing a Double Mutant Form of Amyloid Precursor Protein 695. Journal of Biological Chemistry, 2001, 276, 21562-21570.	1.6	820
10	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
11	Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genetics, 2004, 36, 471-475.	9.4	749
12	ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron, 2015, 88, 678-690.	3.8	716
13	FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-Ï€ Interactions. Cell, 2018, 173, 720-734.e15.	13.5	662
14	Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology, 1999, 1, 479-485.	4.6	519
15	\hat{I}^3 -Secretase, notch, $A\hat{I}^2$ and alzheimer's disease: Where do the presenilins fit in?. Nature Reviews Neuroscience, 2002, 3, 281-290.	4.9	494
16	Candidate Single-Nucleotide Polymorphisms From a Genomewide Association Study of Alzheimer Disease. Archives of Neurology, 2008, 65, 45-53.	4.9	443
17	Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature, 2014, 505, 550-554.	13.7	425
18	Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits. Brain, 2011, 134, 258-277.	3.7	394

#	Article	IF	Citations
19	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.9	376
20	The Presenilin 1 Protein Is a Component of a High Molecular Weight Intracellular Complex That Contains \hat{l}^2 -Catenin. Journal of Biological Chemistry, 1998, 273, 16470-16475.	1.6	354
21	Cyclohexanehexol inhibitors of $\hat{Al^2}$ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature Medicine, 2006, 12, 801-808.	15.2	342
22	RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin All as a Molecular Tether. Cell, 2019, 179, 147-164.e20.	13.5	327
23	Presenilin 1 Controls Î ³ -Secretase Processing of Amyloid Precursor Protein in Pre-Golgi Compartments of Hippocampal Neurons. Journal of Cell Biology, 1999, 147, 277-294.	2.3	305
24	Presenilin Proteins Undergo Heterogeneous Endoproteolysis between Thr291and Ala299and Occur as Stable N- and C-Terminal Fragments in Normal and Alzheimer Brain Tissue. Neurobiology of Disease, 1997, 3, 325-337.	2.1	304
25	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	4.9	302
26	TMP21 is a presenilin complex component that modulates \hat{I}^3 -secretase but not \acute{E} -secretase activity. Nature, 2006, 440, 1208-1212.	13.7	286
27	Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations. Journal of Biological Chemistry, 2005, 280, 34025-34032.	1.6	284
28	Molecular genetics of Alzheimer's disease. Biological Psychiatry, 2000, 47, 183-199.	0.7	280
29	Phosphorylation, Subcellular Localization, and Membrane Orientation of the Alzheimer's Disease-associated Presenilins. Journal of Biological Chemistry, 1997, 272, 3590-3598.	1.6	268
30	Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature Communications, 2021, 12, 1085.	5 . 8	245
31	Microbleed Topography, Leukoaraiosis, and Cognition in Probable Alzheimer Disease From the Sunnybrook Dementia Study. Archives of Neurology, 2008, 65, 790-5.	4.9	239
32	Early-onset Parkinson's disease caused by a compound heterozygous DJ-1 mutation. Annals of Neurology, 2003, 54, 271-274.	2.8	233
33	SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain, 2010, 133, 591-598.	3.7	227
34	C-terminal calcium binding of \hat{l}_{\pm} -synuclein modulates synaptic vesicle interaction. Nature Communications, 2018, 9, 712.	5. 8	223
35	In vivo reduction of amyloid-Â by a mutant copper transporter. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14193-14198.	3.3	217
36	Defective membrane interactions of familial Parkinson's disease mutant A30P α-synuclein 1 1Edited by I. B. Holland. Journal of Molecular Biology, 2002, 315, 799-807.	2.0	213

#	Article	IF	CITATIONS
37	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	9.4	198
38	Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurology, The, 2018, 17, 64-74.	4.9	195
39	Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Human Molecular Genetics, 2014, 23, 6139-6146.	1.4	178
40	Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain, 2006, 129, 3115-3123.	3.7	174
41	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	1.5	174
42	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.4	173
43	Disturbed Activation of Endoplasmic Reticulum Stress Transducers by Familial Alzheimer's Disease-linked Presenilin-1 Mutations. Journal of Biological Chemistry, 2001, 276, 43446-43454.	1.6	170
44	Coding mutations in <scp><i>SORL</i>land <scp>A</scp>lzheimer disease. Annals of Neurology, 2015, 77, 215-227.</scp>	2.8	168
45	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
46	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
47	Presenilin-Dependent Â-Secretase-Mediated Control of p53-Associated Cell Death in Alzheimer's Disease. Journal of Neuroscience, 2006, 26, 6377-6385.	1.7	164
48	Molecular biology and genetics of Alzheimer's disease. Comptes Rendus - Biologies, 2005, 328, 119-130.	0.1	163
49	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.9	162
50	The Genetics of Adult-Onset Neuropsychiatric Disease: Complexities and Conundra?. Science, 2003, 302, 822-826.	6.0	160
51	Identification of Novel Loci for Alzheimer Disease and Replication of CLU, PICALM, and BIN1 in Caribbean Hispanic Individuals. Archives of Neurology, 2011 , 68 , 320 - 8 .	4.9	160
52	Immunotherapy for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14657-14662.	3.3	158
53	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	1.1	155
54	Meta-analysis of the Association Between Variants in SORL1 and Alzheimer Disease. Archives of Neurology, 2011, 68, 99.	4.9	153

#	Article	IF	Citations
55	Extracellular Monomeric Tau Protein Is Sufficient to Initiate the Spread of Tau Protein Pathology. Journal of Biological Chemistry, 2014, 289, 956-967.	1.6	153
56	SORL1 Is Genetically Associated with Late-Onset Alzheimer's Disease in Japanese, Koreans and Caucasians. PLoS ONE, 2013, 8, e58618.	1.1	149
57	ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Human Molecular Genetics, 2012, 21, 1-9.	1.4	148
58	Bilineal Disease and Trans-Heterozygotes in Autosomal Dominant Polycystic Kidney Disease. American Journal of Human Genetics, 2001, 68, 355-363.	2.6	146
59	The in Vivo Brain Interactome of the Amyloid Precursor Protein. Molecular and Cellular Proteomics, 2008, 7, 15-34.	2.5	143
60	Mature Glycosylation and Trafficking of Nicastrin Modulate Its Binding to Presenilins. Journal of Biological Chemistry, 2002, 277, 28135-28142.	1.6	142
61	$\hat{Al^2}$ -degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with $\hat{Al^2}$ pathology. Neuroscience Research, 2002, 43, 39-56.	1.0	141
62	APH-1 Interacts with Mature and Immature Forms of Presenilins and Nicastrin and May Play a Role in Maturation of Presenilin·Nicastrin Complexes. Journal of Biological Chemistry, 2003, 278, 7374-7380.	1.6	140
63	Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiology of Aging, 2012, 33, 2231.e15-2231.e30.	1.5	135
64	Genotype-Renal Function Correlation in Type 2 Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2003, 14, 1164-1174.	3.0	129
65	Rare coding mutations identified by sequencing of <scp>A</scp> lzheimer disease genomeâ€wide association studies loci. Annals of Neurology, 2015, 78, 487-498.	2.8	126
66	The human NACP/α-synuclein gene: chromosome assignment to 4q21.3–q22 and TaqI RFLP analysis. Genomics, 1995, 26, 425-427.	1.3	120
67	<scp>TREM</scp> 2 shedding by cleavage at the H157â€\$158 bond is accelerated for the Alzheimer's diseaseâ€associated H157Y variant. EMBO Molecular Medicine, 2017, 9, 1366-1378.	3.3	120
68	Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nature Genetics, 2000, 25, 143-144.	9.4	116
69	An α-2-macroglobulin insertion-deletion polymorphism in Alzheimer disease. Nature Genetics, 1999, 22, 19-21.	9.4	115
70	Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer's disease mouse models with abundant Aβ in plasma. Neurobiology of Disease, 2006, 24, 114-127.	2.1	112
71	Genome-Wide Linkage Scan of a Large Family with IgA Nephropathy Localizes a Novel Susceptibility Locus to Chromosome 2q36. Journal of the American Society of Nephrology: JASN, 2007, 18, 2408-2415.	3.0	112
72	Increased Production of \hat{I}^2 -Amyloid and Vulnerability to Endoplasmic Reticulum Stress by an Aberrant Spliced Form of Presenilin 2. Journal of Biological Chemistry, 2001, 276, 2108-2114.	1.6	111

#	Article	IF	CITATIONS
73	A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington's disease. Annals of Neurology, 1990, 28, 614-621.	2.8	110
74	Analysis of the glucocerebrosidase gene in Parkinson's disease. Movement Disorders, 2005, 20, 367-370.	2.2	107
75	SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk. Annals of Neurology, 2011, 69, 47-64.	2.8	104
76	Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models. American Journal of Pathology, 2013, 183, 369-381.	1.9	102
77	Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nature Nanotechnology, 2020, 15, 841-847.	15.6	101
78	Frontotemporal dementia with novel tau pathology and a Glu342Valtau mutation. Annals of Neurology, 2000, 48, 850-858.	2.8	97
79	ATP-binding Cassette Transporter A7 (ABCA7) Loss of Function Alters Alzheimer Amyloid Processing. Journal of Biological Chemistry, 2015, 290, 24152-24165.	1.6	96
80	Drug Repositioning for Alzheimer's Disease Based on Systematic â€~omics' Data Mining. PLoS ONE, 2016, e0168812.	1.1,	95
81	Presenilin 1 Mutations Activate γ42-Secretase but Reciprocally Inhibit Îμ-Secretase Cleavage of Amyloid Precursor Protein (APP) and S3-Cleavage of Notch. Journal of Biological Chemistry, 2002, 277, 36521-36526.	1.6	94
82	Benign hereditary chorea: Clinical, genetic, and pathological findings. Annals of Neurology, 2003, 54, 244-247.	2.8	90
83	Hereditary Spastic Paraplegia. Archives of Neurology, 2004, 61, 849.	4.9	90
84	Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy, 2011, 7, 788-789.	4.3	89
85	Investigation of C9orf72 in 4 Neurodegenerative Disorders. Archives of Neurology, 2012, 69, 1583.	4.9	89
86	Apolipoprotein E genotype in patients with alzheimer's disease: Implications for the risk of dementia among relatives. Annals of Neurology, 1995, 38, 797-808.	2.8	87
87	The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer's disease. International Journal of Geriatric Psychiatry, 2010, 25, 511-518.	1.3	87
88	Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis. Neuron, 2015, 87, 963-975.	3.8	87
89	Mutation analysis of <i>CHCHD10 </i> in different neurodegenerative diseases. Brain, 2015, 138, e380-e380.	3.7	86
90	Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Scientific Reports, 2015, 5, 10934.	1.6	85

#	Article	IF	CITATIONS
91	Progressive Loss of Renal Function Is an Age-Dependent Heritable Trait in Type 1 Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 755-762.	3.0	84
92	Dissociated phenotypes in presenilin transgenic mice define functionally distinct Â-secretases. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8972-8977.	3.3	84
93	Presenilin structure, function and role in Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 1-15.	1.8	83
94	Association between SORL1 and Alzheimer's disease in a genome-wide study. NeuroReport, 2007, 18, 1761-1764.	0.6	83
95	Rare Individual Amyloid- \hat{l}^2 Oligomers Act on Astrocytes to Initiate Neuronal Damage. Biochemistry, 2014, 53, 2442-2453.	1.2	83
96	Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. Journal of Neurochemistry, 2003, 86, 572-581.	2.1	81
97	ALS5/SPG11/ <i>KIAA1840</i> mutations cause autosomal recessive axonal Charcot–Marie–Tooth disease. Brain, 2016, 139, 73-85.	3.7	80
98	Homozygous inheritance of the Machado-Joseph disease gene. Annals of Neurology, 1994, 36, 443-447.	2.8	78
99	Group II Metabotropic Glutamate Receptor Stimulation Triggers Production and Release of Alzheimer's Amyloid \hat{l}^2 (sub) 42 (sub) from Isolated Intact Nerve Terminals. Journal of Neuroscience, 2010, 30, 3870-3875.	1.7	78
100	Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiology of Aging, 2016, 38, 214.e7-214.e10.	1.5	78
101	Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Molecular Neurodegeneration, 2012, 7, 3.	4.4	77
102	Molecular genetics of Alzheimer $\hat{E}^{1}\!\!/4$ s disease: the role of \hat{I}^{2} -amyloid and the presenilins. Current Opinion in Neurology, 2000, 13, 377-384.	1.8	75
103	Single Molecule Characterization of the Interactions between Amyloid- \hat{l}^2 Peptides and the Membranes of Hippocampal Cells. Journal of the American Chemical Society, 2013, 135, 1491-1498.	6.6	75
104	Hypermethylation of the CpG-island near the C9orf72 G4C2-repeat expansion in FTLD patients. Human Molecular Genetics, 2014, 23, 5630-5637.	1.4	74
105	TET2 Regulates the Neuroinflammatory Response in Microglia. Cell Reports, 2019, 29, 697-713.e8.	2.9	74
106	Genetic association of CR1 with Alzheimer's disease: A tentative disease mechanism. Neurobiology of Aging, 2012, 33, 2949.e5-2949.e12.	1.5	72
107	Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 645-653.	0.4	72
108	Carboxyl-terminal Fragments of Alzheimer \hat{l}^2 -Amyloid Precursor Protein Accumulate in Restricted and Unpredicted Intracellular Compartments in Presenilin 1-deficient Cells. Journal of Biological Chemistry, 2000, 275, 36794-36802.	1.6	71

#	Article	IF	Citations
109	Will anti-amyloid therapies work for Alzheimer's disease?. Lancet, The, 2008, 372, 180-182.	6.3	71
110	Analysis of IFT74as a candidate gene for chromosome 9p-linked ALS-FTD. BMC Neurology, 2006, 6, 44.	0.8	70
111	Familial Alzheimer's disease: Progress and problems. Neurobiology of Aging, 1989, 10, 417-425.	1.5	69
112	Cloning and characterization of the Drosophila presenilin homologue. NeuroReport, 1997, 8, 1025-1029.	0.6	69
113	The Presenilin Proteins Are Components of Multiple Membrane-bound Complexes That Have Different Biological Activities. Journal of Biological Chemistry, 2004, 279, 31329-31336.	1.6	68
114	Cortical Neuronal and Glial Pathology in TgTauP301L Transgenic Mice. American Journal of Pathology, 2006, 169, 1365-1375.	1.9	68
115	Conversion to Dementia among Two Groups with Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 2004, 18, 307-313.	0.7	67
116	Vps10 Family Proteins and the Retromer Complex in Aging-Related Neurodegeneration and Diabetes. Journal of Neuroscience, 2012, 32, 14080-14086.	1.7	65
117	<i>SORL1</i> mutations in early- and late-onset Alzheimer disease. Neurology: Genetics, 2016, 2, e116.	0.9	65
118	Three different mutations of presenilin 1 gene in early-onset Alzheimer's disease families. Neuroscience Letters, 1996, 208, 195-198.	1.0	64
119	Association studies of cholesterol metabolism genes (CH25H, ABCA1 and CH24H) in Alzheimer's disease. Neuroscience Letters, 2006, 391, 142-146.	1.0	64
120	The physiological and pathological biophysics of phase separation and gelation of RNA binding proteins in amyotrophic lateral sclerosis and fronto-temporal lobar degeneration. Brain Research, 2018, 1693, 11-23.	1.1	63
121	Loss of Î ³ -Secretase Function Impairs Endocytosis of Lipoprotein Particles and Membrane Cholesterol Homeostasis. Journal of Neuroscience, 2008, 28, 12097-12106.	1.7	62
122	Molecular genetic approaches to Alzheimer's disease. Trends in Neurosciences, 1989, 12, 152-158.	4.2	61
123	Association of Distinct Variants in SORL1 With Cerebrovascular and Neurodegenerative Changes Related to Alzheimer Disease. Archives of Neurology, 2008, 65, 1640.	4.9	60
124	Î-Catenin Is Genetically and Biologically Associated with Cortical Cataract and Future Alzheimer-Related Structural and Functional Brain Changes. PLoS ONE, 2012, 7, e43728.	1.1	58
125	Structural Interactions between Inhibitor and Substrate Docking Sites Give Insight into Mechanisms of Human PS1 Complexes. Structure, 2014, 22, 125-135.	1.6	56
126	Current and future implications of basic and translational research on amyloid- \hat{l}^2 peptide production and removal pathways. Molecular and Cellular Neurosciences, 2015, 66, 3-11.	1.0	56

#	Article	IF	CITATIONS
127	Both the Sequence and Length of the C Terminus of PEN-2 Are Critical for Intermolecular Interactions and Function of Presenilin Complexes. Journal of Biological Chemistry, 2004, 279, 46455-46463.	1.6	55
128	Genetic complexity of Alzheimer's disease: Successes and challenges. Journal of Alzheimer's Disease, 2006, 9, 381-387.	1.2	55
129	Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and ratÂneuronal cell death. Communications Biology, 2020, 3, 79.	2.0	55
130	p53-Dependent Transcriptional Control of Cellular Prion by Presenilins. Journal of Neuroscience, 2009, 29, 6752-6760.	1.7	54
131	Fâ€box/ <scp>LRR</scp> â€repeat protein 7 is genetically associated with Alzheimer's disease. Annals of Clinical and Translational Neurology, 2015, 2, 810-820.	1.7	54
132	Impaired conditioned taste aversion learning in APP transgenic mice. Neurobiology of Aging, 2004, 25, 1213-1219.	1.5	49
133	Cytosolic Proteins Regulate α-Synuclein Dissociation from Presynaptic Membranes. Journal of Biological Chemistry, 2006, 281, 32148-32155.	1.6	49
134	Genome-Wide Survey of Large Rare Copy Number Variants in Alzheimer's Disease Among Caribbean Hispanics. G3: Genes, Genomes, Genetics, 2012, 2, 71-78.	0.8	49
135	Genetic Variability in <i>CHMP2B</i> and Frontotemporal Dementia. Neurodegenerative Diseases, 2006, 3, 129-133.	0.8	47
136	Alzheimer Amyloid Peptide A \hat{l}^2 42 Regulates Gene Expression of Transcription and Growth Factors. Journal of Alzheimer's Disease, 2015, 44, 613-624.	1.2	47
137	Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Molecular Psychiatry, 2019, 24, 1383-1397.	4.1	46
138	Antibody clears senile plaques. Nature, 1999, 400, 116-117.	13.7	45
139	The Gene Encoding Nicastrin, a Major Î ³ -Secretase Component, Modifies Risk for Familial Early-Onset Alzheimer Disease in a Dutch Population-Based Sample. American Journal of Human Genetics, 2002, 70, 1568-1574.	2.6	45
140	Identification of the genetic locus for keratosis palmaris et plantaris on chromosome 17 near the RARA and keratin type I genes. Nature Genetics, 1993, 5, 158-162.	9.4	44
141	Random Mutagenesis of Presenilin-1 Identifies Novel Mutants Exclusively Generating Long Amyloid β-Peptides. Journal of Biological Chemistry, 2005, 280, 19070-19077.	1.6	42
142	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	4.5	41
143	Epidemiology and genetics of frontotemporal dementia: a door-to-door survey in Southern Italy. Neurobiology of Aging, 2012, 33, 2948.e1-2948.e10.	1.5	40
144	Singleâ€Molecule Imaging Reveals that Small Amyloidâ€Î² _{1–42} Oligomers Interact with the Cellular Prion Protein (PrP ^C). ChemBioChem, 2014, 15, 2515-2521.	1.3	40

#	Article	IF	CITATIONS
145	Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurology, 2015, 72, 1313.	4.5	39
146	<i>APOE</i> å€iµ4 associates with hippocampal volume, learning, and memory across the spectrum of Alzheimer's disease and dementia with Lewy bodies. Alzheimer's and Dementia, 2018, 14, 1137-1147.	0.4	39
147	Aberrant Presenilin-1 Expression Downregulates LDL Receptor-Related Protein (LRP): Is LRP Central to Alzheimer's Disease Pathogenesis?. Molecular and Cellular Neurosciences, 1999, 14, 129-140.	1.0	38
148	Recurrent fetal loss associated with bilineal inheritance of type 1 autosomal dominant polycystic kidney disease. American Journal of Kidney Diseases, 2002, 40, 16-20.	2.1	38
149	The levels of mature glycosylated nicastrin are regulated and correlate with \hat{l}^3 -secretase processing of amyloid \hat{l}^2 -precursor protein. Journal of Neurochemistry, 2002, 83, 1065-1071.	2.1	38
150	The & Domain Fragments Regulate p53. Current Alzheimer Research, 2007, 4, 423-426.	0.7	38
151	Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set. JAMA Neurology, 2013, 70, 1261-7.	4.5	37
152	Gerstmann-StrÃ g ssler-Scheinker Disease (PRNP P102L): Amyloid Deposits Are Best Recognized by Antibodies Directed to Epitopes in PrP Region 90-165. Journal of Neuropathology and Experimental Neurology, 1995, 54, 790-801.	0.9	36
153	No association between apolipoprotein E genotype and late-onset depression in Alzheimer's disease. Biological Psychiatry, 1997, 41, 246-248.	0.7	36
154	Splicing mutation of presenilin-1 gene for early-onset familial Alzheimer's disease. Human Mutation, 1998, 11, S91-S94.	1.1	36
155	Inhibiting Amyloid Precursor Protein C-terminal Cleavage Promotes an Interaction with Presenilin 1. Journal of Biological Chemistry, 2000, 275, 20794-20798.	1.6	36
156	Further examination of the candidate genes in chromosome 12p13 locus for late-onset Alzheimer disease. Neurogenetics, 2008, 9, 127-138.	0.7	36
157	Presenilin-1 Holoprotein is an Interacting Partner of Sarco Endoplasmic Reticulum Calcium-ATPase and Confers Resistance to Endoplasmic Reticulum Stress. Journal of Alzheimer's Disease, 2010, 20, 261-273.	1.2	36
158	Mutation analysis of patients with neurodegenerative disorders using NeuroX array. Neurobiology of Aging, 2015, 36, 545.e9-545.e14.	1.5	36
159	An exploration of cognitive subgroups in Alzheimer's disease. Journal of the International Neuropsychological Society, 2010, 16, 233-243.	1.2	35
160	Presenilin 1 and Presenilin 2 Have Differential Effects on the Stability and Maturation of Nicastrin in Mammalian Brain. Journal of Biological Chemistry, 2003, 278, 19974-19979.	1.6	34
161	Expanded Genomewide Scan Implicates a Novel Locus at 3q28 Among Caribbean Hispanics With Familial Alzheimer Disease. Archives of Neurology, 2006, 63, 1591.	4.9	34
162	Structural biology of presenilin 1 complexes. Molecular Neurodegeneration, 2014, 9, 59.	4.4	34

#	Article	IF	CITATIONS
163	Clinical and genetic study of a largeSPG4 Italian family. Movement Disorders, 2005, 20, 1055-1059.	2.2	33
164	Family reunion – The ZIP/prion gene family. Progress in Neurobiology, 2011, 93, 405-420.	2.8	33
165	Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model. Journal of Comparative Neurology, 2014, 522, 2319-2335.	0.9	33
166	Wild-type sTREM2 blocks $\hat{Al^2}$ aggregation and neurotoxicity, but the Alzheimer's R47H mutant increases $\hat{Al^2}$ aggregation. Journal of Biological Chemistry, 2021, 296, 100631.	1.6	33
167	Proteolytic processing of presenilin-1 (PS-1) is not associated with Alzheimer's disease with or without PS-1 mutations. FEBS Letters, 1997, 418, 162-166.	1.3	32
168	A novel pathogenic mutation (Leu262Phe) found in the presenilin 1 gene in early-onset Alzheimer's disease. Neuroscience Letters, 1997, 234, 3-6.	1.0	32
169	Genetic association study of PINK1 coding polymorphisms in Parkinson's disease. Neuroscience Letters, 2004, 372, 226-229.	1.0	31
170	Homozygous and heterozygous PINK1 mutations: Considerations for diagnosis and care of Parkinson's disease patients. Movement Disorders, 2006, 21, 875-879.	2.2	31
171	New locus for hereditary spastic paraplegia maps to chromosome 1p31.1-1p21.1. Annals of Neurology, 2005, 58, 423-429.	2.8	30
172	IL5RA and TNFRSF6B Gene Variants Are Associated With Sporadic IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 1025-1033.	3.0	30
173	APH1 Polar Transmembrane Residues Regulate the Assembly and Activity of Presenilin Complexes. Journal of Biological Chemistry, 2009, 284, 16298-16307.	1.6	30
174	A TgCRND8 Mouse Model of Alzheimer's Disease Exhibits Sexual Dimorphisms inÂBehavioral Indices of Cognitive Reserve. Journal of Alzheimer's Disease, 2016, 51, 757-773.	1.2	30
175	Presenilin function: connections to Alzheimer's disease and signal transduction. Biochemical Society Symposia, 2001, 67, 89-100.	2.7	30
176	Biology of presenilins as causative molecules for Alzheimer disease. Clinical Genetics, 1999, 55, 219-225.	1.0	29
177	Clinical and Pathologic Evidence of Corticobasal Degeneration and Progressive Supranuclear Palsy in Familial Tauopathy. Archives of Neurology, 2005, 62, 1453.	4.9	29
178	Heritability and genetic variance of dementia with Lewy bodies. Neurobiology of Disease, 2019, 127, 492-501.	2.1	29
179	The isotropic fractionator provides evidence for differential loss of hippocampal neurons in two mouse models of Alzheimer's disease. Molecular Neurodegeneration, 2012, 7, 58.	4.4	28
180	Mutation analysis of the MS4A and TREM gene clusters inÂaÂcase-control Alzheimer's disease data set. Neurobiology of Aging, 2016, 42, 217.e7-217.e13.	1.5	28

#	Article	IF	CITATIONS
181	Loss of nicastrin elicits an apoptotic phenotype in mouse embryos. Brain Research, 2006, 1086, 76-84.	1.1	27
182	Familial Dementia With Frontotemporal Features Associated With ⟨scp⟩M146V⟨ scp⟩ Presenilinâ€l Mutation. Brain Pathology, 2013, 23, 595-600.	2.1	27
183	Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathologica Communications, 2020, 8, 5.	2.4	27
184	Amyloid-Î ² -protein isoforms in brain of subjects with PS1-linked, Î ² APP-linked and sporadic Alzheimer disease. Molecular Brain Research, 1998, 56, 178-185.	2.5	26
185	Age-at-onset linkage analysis in Caribbean Hispanics with familial late-onset Alzheimer's disease. Neurogenetics, 2008, 9, 51-60.	0.7	26
186	The ONDRISeq panel: custom-designed next-generation sequencing of genes related to neurodegeneration. Npj Genomic Medicine, 2016, 1, 16032.	1.7	26
187	Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins. Biochemical Journal, 2006, 394, 501-509.	1.7	25
188	Association study of the 5-hydroxytryptamine6 receptor gene in Alzheimer's disease. Neuroscience Letters, 2002, 325, 13-16.	1.0	24
189	Gerstmann-Str \tilde{A} u ssler-Scheinker disease with the Q217R mutation mimicking frontotemporal dementia. Acta Neuropathologica, 2005, 110, 317-319.	3.9	24
190	p53-dependent Aph-1 and Pen-2 Anti-apoptotic Phenotype Requires the Integrity of the \hat{I}^3 -Secretase Complex but Is Independent of Its Activity. Journal of Biological Chemistry, 2007, 282, 10516-10525.	1.6	24
191	Long-Term Statin Therapy and CSF Cholesterol Levels: Implications for Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2009, 27, 519-524.	0.7	24
192	Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2017, 57, 104-119.	1.5	24
193	Apolipoprotein-E (APO-E) Genotype and Symptoms of Psychosis in Alzheimer's Disease. American Journal of Geriatric Psychiatry, 1999, 7, 119-123.	0.6	23
194	T313M PINK1 Mutation in an Extended Highly Consanguineous Saudi Family With Early-Onset Parkinson Disease. Archives of Neurology, 2006, 63, 1483.	4.9	23
195	TMP21 Transmembrane Domain Regulates Î ³ -Secretase Cleavage. Journal of Biological Chemistry, 2009, 284, 28634-28641.	1.6	23
196	Choice of Biological Source Material Supersedes Oxidative Stress in Its Influence on DJ-1 in Vivo Interactions with Hsp90. Journal of Proteome Research, 2011, 10, 4388-4404.	1.8	23
197	A rare variant in MLKL confers susceptibility to ApoE É>4-negative Alzheimer's disease in Hong Kong Chinese population. Neurobiology of Aging, 2018, 68, 160.e1-160.e7.	1.5	23
198	Amyloid- \hat{l}^2 toxicity modulates tau phosphorylation through the PAX6 signalling pathway. Brain, 2021, 144, 2759-2770.	3.7	23

#	Article	IF	CITATIONS
199	Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). Movement Disorders, 2006, 21, 279-281.	2.2	22
200	Response to Correspondence: Pardossi-Piquard etÂal., "Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of βAPP and APLP.―Neuron 46, 541–554. Neuron, 2007, 53, 483-486.	3.8	21
201	Association between variants in IDE-KIF11-HHEX and plasma amyloid \hat{l}^2 levels. Neurobiology of Aging, 2012, 33, 199.e13-199.e17.	1.5	21
202	A novel frameshift mutation induced by an adenosine insertion in the polycystic kidney disease 2 (PKD2) gene. Kidney International, 1998, 53, 1127-1132.	2.6	20
203	NovelSPG6 mutation p.A100T in a Japanese family with autosomal dominant form of hereditary spastic paraplegia. Movement Disorders, 2006, 21, 1531-1533.	2.2	20
204	Childhood Onset in Familial Prion Disease With a Novel Mutation in the PRNP Gene. Archives of Neurology, 2006, 63, 1016.	4.9	20
205	Intra-Familial Clinical Heterogeneity due to FTLD-U with TDP-43 Proteinopathy Caused by a Novel Deletion in Progranulin Gene (PGRN). Journal of Alzheimer's Disease, 2011, 22, 1123-1133.	1.2	20
206	Inbreeding among Caribbean Hispanics from the Dominican Republic and its effects on risk of Alzheimer disease. Genetics in Medicine, 2015, 17, 639-643.	1.1	20
207	Distinguishable effects of Presenilin-1 and APP717 mutations on amyloid plaque deposition. Neurobiology of Aging, 2001, 22, 367-376.	1.5	19
208	Analysis of C9orf72 in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Argentina. Neurobiology of Aging, 2016, 40, 192.e13-192.e15.	1.5	18
209	Alleles at the Nicastrin locus modify presenilin 1- deficiency phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14452-14457.	3.3	17
210	Differential display analysis of presenilin 1-deficient mouse brains. Molecular Brain Research, 2002, 109, 56-62.	2.5	17
211	Identification and Structural Characterisation of Carboxy-Terminal Polypeptides and Antibody Epitopes of Alzheimer's Amyloid Precursor Protein Using High-Resolution Mass Spectrometry. European Journal of Mass Spectrometry, 2005, 11, 547-555.	0.5	17
212	p53â€Dependent control of cell death by nicastrin: lack of requirement for presenilinâ€dependent γâ€secretase complex. Journal of Neurochemistry, 2009, 109, 225-237.	2.1	17
213	Transient abundance of presenilin 1 fragments/nicastrin complex associated with synaptogenesis during development in rat cerebellum. Neurobiology of Aging, 2006, 27, 88-97.	1.5	15
214	Deciphering microglial diversity in Alzheimer's disease. Science, 2017, 356, 1123-1124.	6.0	15
215	Z- \hat{l}_{\pm} ₁ -antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. Science Advances, 2022, 8, eabm2094.	4.7	15
216	Unravelling the disease process. Lancet, The, 2001, 358, S1.	6.3	14

#	Article	IF	CITATIONS
217	\hat{l}^3 -Secretase-like Cleavages of Notch and \hat{l}^2 APP Are Mutually Exclusive in Human Cells. Biochemical and Biophysical Research Communications, 2002, 290, 1408-1410.	1.0	14
218	Association analysis between Alzheimer's disease and the Nicastrin gene polymorphisms. Neuroscience Letters, 2002, 333, 115-118.	1.0	14
219	Presenilin-directed inhibitors of gamma-secretase trigger caspase3 activation in presenilin-expressing and presenilin-deficient cells. Journal of Neurochemistry, 2004, 90, 800-806.	2.1	14
220	Apolipoprotein E polymorphism and age of onset for Alzheimer's disease in a bi-ethnic sample. International Psychogeriatrics, 2004, 16, 317-326.	0.6	14
221	TMP21 regulates \hat{A}^2 production but does not affect caspase-3, p53, and neprilysin. Biochemical and Biophysical Research Communications, 2008, 371, 69-74.	1.0	14
222	Characterizing familial corticobasal syndrome due to Alzheimer's disease pathology and PSEN1 mutations., 2017, 13, 520-530.		14
223	Longitudinal evaluation of Tauâ€P301L transgenic mice reveals no cognitive impairments at 17Âmonths of age. Brain and Behavior, 2018, 8, e00896.	1.0	14
224	Statins Differentially Affect Amyloid Precursor Protein Metabolism in Presymptomatic PS1 and Non-PS1 Subjects. Archives of Neurology, 2007, 64, 1672.	4.9	13
225	Structural and Chemical Biology of Presenilin Complexes. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024067.	2.9	13
226	A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiology of Aging, 2019, 75, 223.e1-223.e10.	1.5	13
227	Anti-Amyloid-β-Mediated Positron Emission Tomography Imaging in Alzheimer's Disease Mouse Brains. PLoS ONE, 2012, 7, e51958.	1.1	13
228	Association studies between the plasmin genes and late-onset Alzheimer's disease. Neurobiology of Aging, 2007, 28, 1041-1043.	1.5	12
229	Selectively tuning Î ³ -secretase. Nature, 2010, 467, 36-37.	13.7	12
230	Analysis of C9orf72 repeat expansions in a large international cohort of dementia with Lewy bodies. Neurobiology of Aging, 2017, 49, 214.e13-214.e15.	1.5	12
231	Does Soluble TREM2 Protect Against Alzheimer's Disease?. Frontiers in Aging Neuroscience, 2021, 13, 834697.	1.7	12
232	Carboxyl-Terminal Fragments of Presenilin-1 Are Closely Related to Cytoskeletal Abnormalities in Alzheimer's Brains. Biochemical and Biophysical Research Communications, 1999, 256, 512-518.	1.0	11
233	Wild-Type and Mutated Nicastrins Do Not Display Aminopeptidase M- and B-like Activities. Biochemical and Biophysical Research Communications, 2001, 289, 678-680.	1.0	11
234	Absence of association between Alzheimer disease and the regulatory region polymorphism of the PS2 gene in an Italian population. Neuroscience Letters, 2003, 343, 210-212.	1.0	11

#	Article	IF	CITATIONS
235	Targeting the amyloid- \hat{l}^2 antibody in the brain tissue of a mouse model of Alzheimer's disease. Journal of Controlled Release, 2012, 159, 302-308.	4.8	11
236	Interactome Analyses of Mature \hat{I}^3 -Secretase Complexes Reveal Distinct Molecular Environments of Presenilin (PS) Paralogs and Preferential Binding of Signal Peptide Peptidase to PS2. Journal of Biological Chemistry, 2013, 288, 15352-15366.	1.6	11
237	LRP10 in α-synucleinopathies. Lancet Neurology, The, 2018, 17, 1032-1033.	4.9	11
238	Inherited and Sporadic Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degenerations arising from Pathological Condensates of Phase Separating Proteins. Human Molecular Genetics, 2019, 28, R187-R196.	1.4	11
239	Genetic and epigenetic study of an Alzheimer's disease family with monozygotic triplets. Brain, 2019, 142, 3375-3381.	3.7	11
240	Lipid Rafts Act as a Common Platform for Amyloid-β Oligomer-Induced Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2022, 87, 1189-1203.	1.2	11
241	Partial linkage map of chromosome 13q in the region of the Wilson disease and retinoblastoma genes. Genetic Epidemiology, 1988, 5, 375-380.	0.6	10
242	JLK Inhibitors: Isocoumarin Compounds as Putative Probes to Selectively Target the γ-Secretase Pathway. Current Alzheimer Research, 2005, 2, 327-334.	0.7	10
243	Comprehensive mutational analysis of LRRK2 reveals variants supporting association with autosomal dominant Parkinson's disease. Journal of Human Genetics, 2011, 56, 671-675.	1.1	10
244	Potential roles for presenilin-1 in oxygen sensing and in glial-specific gene expression. NeuroReport, 2004, 15, 2025-2028.	0.6	8
245	Characterization of the Kindred of Alois Alzheimer's Patient With Plaque-only Dementia. Alzheimer Disease and Associated Disorders, 2006, 20, 291-294.	0.6	8
246	Excess of nicastrin in brain results in heterozygosity having no effect on endogenous APP processing and amyloid peptide levels in vivo. Neurobiology of Disease, 2007, 25, 291-296.	2.1	8
247	Brain Traffic. Archives of Neurology, 2009, 66, 433-4.	4.9	8
248	Ultra-rare mutations in <i>SRCAP</i> segregate in Caribbean Hispanic families with Alzheimer disease. Neurology: Genetics, 2017, 3, e178.	0.9	8
249	Alzheimer's Disease. Neurobiology of Disease, 2000, 7, 546-548.	2.1	7
250	Generation of Amyloid \hat{l}^2 Protein from a Presenilin-1 and \hat{l}^2 APP Complex. Biochemical and Biophysical Research Communications, 2002, 292, 571-578.	1.0	7
251	Overexpression of Human CRB1 or Related Isoforms, CRB2 and CRB3, Does Not Regulate the Human Presenilin Complex in Culture Cells. Biochemistry, 2007, 46, 13704-13710.	1.2	7
252	Regulatory RNA goes awry in Alzheimer's disease. Nature Medicine, 2008, 14, 711-712.	15.2	7

#	Article	lF	CITATIONS
253	Prevention of Alzheimer's disease in high risk groups: statin therapy in subjects with PSEN1 mutations or heterozygosity for apolipoprotein E epsilon 4. Alzheimer's Research and Therapy, 2010, 2, 31.	3.0	7
254	Role of p73 in Alzheimer disease: lack of association in mouse models or in human cohorts. Molecular Neurodegeneration, 2013, 8, 10.	4.4	7
255	Massachusetts Alzheimer's Disease Research Center: Progress and challenges. Alzheimer's and Dementia, 2015, 11, 1241-1245.	0.4	7
256	Genetic Complexity of Early-Onset Alzheimer's Disease. , 2018, , 29-50.		7
257	Interfamilial and Intrafamilial Phenotypic Heterogeneity in Familial Alzheimer's Disease. Journal of Geriatric Psychiatry and Neurology, 1997, 10, 1-6.	1.2	6
258	Lack of association between Alzheimer's disease and the promoter region polymorphisms of the nicastrin gene. Neuroscience Letters, 2004, 363, 49-53.	1.0	6
259	Absence of linkage between familial amyotrophic lateral sclerosis and copper chaperone for the superoxide dismutase gene locus in two Italian pedigrees. Neuroscience Letters, 2000, 285, 83-86.	1.0	5
260	Frontotemporal dementia with novel tau pathology and a Glu342Val tau mutation. Annals of Neurology, 2000, 48, 850-858.	2.8	5
261	Evidence for presenilin-1 involvement in amyloid angiopathy in the Alzheimer's disease-affected brain. Brain Research, 1998, 789, 307-314.	1.1	4
262	Study on the Putative Contribution of Caspases and the Proteasome to the Degradation of Aph-1a and Pen-2. Neurodegenerative Diseases, 2007, 4, 156-163.	0.8	4
263	A novel mutation in the SPG3A gene (atlastin) in hereditary spastic paraplegia. Journal of Neurology, 2007, 254, 972-974.	1.8	4
264	Oral Immunization with Soybean Storage Protein Containing Amyloid-β 4–10 Prevents Spatial Learning Decline. Journal of Alzheimer's Disease, 2019, 70, 487-503.	1.2	4
265	FcÎ ³ Receptor Polymorphisms Do Not Predict Response to Intravenous Immunoglobulin in Myasthenia Gravis. Journal of Clinical Neuromuscular Disease, 2012, 14, 1-6.	0.3	3
266	Vigilin interacts with signal peptide peptidase. Proteome Science, 2012, 10, 33.	0.7	3
267	Lack of SOD1 gene mutations and activity alterations in two Italian families with amyotrophic lateral sclerosis. Neuroscience Letters, 2000, 289, 157-160.	1.0	2
268	GENETICS OF DEMENTIA. CONTINUUM Lifelong Learning in Neurology, 2008, 14, 29-48.	0.4	1
269	Localization and trafficking of endogenous anterior pharynx-defective 1, a component of Alzheimer's disease related \hat{l}^3 -secretase. Neuroscience Letters, 2010, 483, 53-56.	1.0	1
270	$\hat{Al^2}$ vaccination of a genetic model of Alzheimer's disease. International Congress Series, 2003, 1252, 405-409.	0.2	0

ARTICLE IF CITATIONS

271 Genetics and Neurobiology of Alzheimer's Disease and Frontotemporal Dementias., 2006, , 1130-1141. O