
Tom H Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7562173/publications.pdf Version: 2024-02-01

TOM H CHEUNC

#	Article	IF	CITATIONS
1	Molecular regulation of stem cell quiescence. Nature Reviews Molecular Cell Biology, 2013, 14, 329-340.	37.0	912
2	Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging. Cell Reports, 2013, 4, 189-204.	6.4	463
3	Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells. Stem Cells, 2012, 30, 232-242.	3.2	447
4	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
5	Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 2012, 482, 524-528.	27.8	393
6	Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nature Protocols, 2015, 10, 1612-1624.	12.0	290
7	High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Molecular Cell, 2019, 74, 609-621.e6.	9.7	271
8	IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2705-13.	7.1	247
9	Systematic Identification of C.Âelegans miRISC Proteins, miRNAs, and mRNA Targets by Their Interactions with GW182 Proteins AIN-1 and AIN-2. Molecular Cell, 2007, 28, 598-613.	9.7	226
10	ExÂVivo Expansion and InÂVivo Self-Renewal of Human Muscle Stem Cells. Stem Cell Reports, 2015, 5, 621-632.	4.8	168
11	Alternative Polyadenylation Mediates MicroRNA Regulation of Muscle Stem Cell Function. Cell Stem Cell, 2012, 10, 327-336.	11.1	133
12	Impaired Notch Signaling Leads to a Decrease in p53 Activity and Mitotic Catastrophe in Aged Muscle Stem Cells. Cell Stem Cell, 2018, 23, 544-556.e4.	11.1	107
13	Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis. Nature, 2016, 540, 276-279.	27.8	93
14	Large-Scale Expansion of Human iPSC-Derived Skeletal Muscle Cells for Disease Modeling and Cell-Based Therapeutic Strategies. Stem Cell Reports, 2018, 10, 1975-1990.	4.8	81
15	Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Developmental Cell, 2020, 53, 661-676.e6.	7.0	72
16	<scp>YY</scp> 1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO Journal, 2019, 38, .	7.8	69
17	IL-33-PU.1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer's Disease. Cell Reports, 2020, 31, 107530.	6.4	65
18	Stem cell quiescence: the challenging path to activation. Development (Cambridge), 2021, 148, .	2.5	54

Том Н Снеинс

#	Article	IF	CITATIONS
19	STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration. Cell Reports, 2016, 16, 2102-2115.	6.4	50
20	A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Developmental Cell, 2017, 41, 382-391.e5.	7.0	48
21	Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches. Methods in Molecular Biology, 2018, 1686, 1-25.	0.9	37
22	p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO Journal, 2018, 37, .	7.8	33
23	A long noncoding RNA, <i>LncMyoD</i> , modulates chromatin accessibility to regulate muscle stem cell myogenic lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32464-32475.	7.1	32
24	All's well that ends well: alternative polyadenylation and its implications for stem cell biology. Current Opinion in Cell Biology, 2013, 25, 222-232.	5.4	30
25	Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. Biomedical Optics Express, 2017, 8, 4921.	2.9	28
26	CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nature Communications, 2022, 13, 947.	12.8	16
27	Remodeling the cardiac transcriptional landscape with diet. Physiological Genomics, 2011, 43, 772-780.	2.3	15
28	Anemoside A3 ameliorates experimental autoimmune encephalomyelitis by modulating T helper 17 cell response. PLoS ONE, 2017, 12, e0182069.	2.5	15
29	Hormones induce the formation of luminal-derived basal cells in the mammary gland. Cell Research, 2019, 29, 206-220.	12.0	14
30	Protocol for Isolation and Characterization of In Situ Fixed Quiescent Muscle Stem Cells. STAR Protocols, 2020, 1, 100128.	1.2	10
31	Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLoS Genetics, 2021, 17, e1009635.	3.5	10
32	Identifying pattern-defined regulatory islands in mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10116-10121.	7.1	8
33	Deciphering the chromatin organization and dynamics for muscle stem cell function. Current Opinion in Cell Biology, 2021, 73, 124-132.	5.4	5