Fidele Ntie-Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7561638/publications.pdf

Version: 2024-02-01

96 papers 2,465 citations

218677 26 h-index 223800 46 g-index

112 all docs

112 docs citations

112 times ranked

3014 citing authors

#	Article	IF	Citations
1	AfroDb: A Select Highly Potent and Diverse Natural Product Library from African Medicinal Plants. PLoS ONE, 2013, 8, e78085.	2.5	176
2	The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7, 36977-36999.	3.6	157
3	The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malaria Journal, 2013, 12, 449.	2.3	146
4	An in silico evaluation of the ADMET profile of the StreptomeDB database. SpringerPlus, 2013, 2, 353.	1.2	117
5	NANPDB: A Resource for Natural Products from Northern African Sources. Journal of Natural Products, 2017, 80, 2067-2076.	3.0	103
6	The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malaria Journal, 2014, 13, 81.	2.3	92
7	Control of malaria and other vector-borne protozoan diseases in the tropics: enduring challenges despite considerable progress and achievements. Infectious Diseases of Poverty, 2014, 3, 1.	3.7	88
8	In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacology, 2013, 1, 12.	3.3	79
9	Bioactive natural products derived from the Central African flora against neglected tropical diseases and HIV. Natural Product Reports, 2013, 30, 1098.	10.3	73
10	Molecular Modeling of Potential Anticancer Agents from African Medicinal Plants. Journal of Chemical Information and Modeling, 2014, 54, 2433-2450.	5.4	70
11	CamMedNP: Building the Cameroonian 3D structural natural products database for virtual screening. BMC Complementary and Alternative Medicine, 2013, 13, 88.	3.7	65
12	Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complementary and Alternative Medicine, 2013, 13, 147.	3.7	63
13	StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Research, 2021, 49, D600-D604.	14.5	58
14	A Bioactivity Versus Ethnobotanical Survey of Medicinal Plants from Nigeria, West Africa. Natural Products and Bioprospecting, 2014, 4, 1-19.	4.3	54
15	Virtualizing the p-ANAPL Library: A Step towards Drug Discovery from African Medicinal Plants. PLoS ONE, 2014, 9, e90655.	2.5	51
16	ConMedNP: a natural product library from Central African medicinal plants for drug discovery. RSC Advances, 2014, 4, 409-419.	3.6	50
17	Anti-Trypanosomal Activity of Nigerian Plants and Their Constituents. Molecules, 2015, 20, 7750-7771.	3.8	44
18	Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part II: Alkaloids, Terpenoids and Flavonoids. Anti-Cancer Agents in Medicinal Chemistry, 2015, 16, 108-127.	1.7	43

#	Article	IF	CITATIONS
19	The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malaria Journal, 2020, 19, 183.	2.3	42
20	The potential of anti-malarial compounds derived from African medicinal plants, part III: an in silico evaluation of drug metabolism and pharmacokinetics profiling. Organic and Medicinal Chemistry Letters, 2014, 4, 6.	2.0	39
21	Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors. PLoS ONE, 2015, 10, e0121099.	2.5	38
22	Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis and Leishmaniasis. Natural Products and Bioprospecting, 2018, 8, 151-169.	4.3	34
23	Natural Products as Modulators of Sirtuins. Molecules, 2020, 25, 3287.	3.8	34
24	Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules, 2020, 25, 2070.	3.8	34
25	Assessing the pharmacokinetic profile of the CamMedNP natural products database: an in silico approach. Organic and Medicinal Chemistry Letters, 2013, 3, 10.	2.0	31
26	Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis. Molecular BioSystems, 2014, 10, 223-239.	2.9	30
27	Binding of anti-Trypanosoma natural products from African flora against selected drug targets: a docking study. Medicinal Chemistry Research, 2017, 26, 562-579.	2.4	29
28	Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Research, 2018, 158, 63-77.	4.1	29
29	Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Frontiers in Pharmacology, 2020, 11, 992.	3.5	28
30	Pharmacoinformatic Investigation of Medicinal Plants from East Africa. Molecular Informatics, 2020, 39, e2000163.	2.5	28
31	New Antimalarial Hits from Dacryodes edulis (Burseraceae) - Part I: Isolation, In Vitro Activity, In Silico "drug-likeness―and Pharmacokinetic Profiles. PLoS ONE, 2013, 8, e79544.	2.5	27
32	Pharmacophore modeling and in silico toxicity assessment of potential anticancer agents from African medicinal plants. Drug Design, Development and Therapy, 2016, Volume 10, 2137-2154.	4.3	25
33	Targeting Cysteine Proteases from Plasmodium falciparum: A General Overview, Rational Drug Design and Computational Approaches for Drug Discovery. Current Drug Targets, 2018, 19, 501-526.	2.1	25
34	The uniqueness and therapeutic value of natural products from West African medicinal plants. Part I: uniqueness and chemotaxonomy. RSC Advances, 2014, 4, 28728-28755.	3.6	23
35	1-Aryl-1,2,3,4-tetrahydroisoquinolines as potential antimalarials: synthesis, in vitro antiplasmodial activity and in silico pharmacokinetics evaluation. RSC Advances, 2014, 4, 22856-22865.	3.6	22
36	Novel Histone Deacetylase Inhibitors and HIV-1 Latency-Reversing Agents Identified by Large-Scale Virtual Screening. Frontiers in Pharmacology, 2020, 11, 905.	3.5	22

#	Article	IF	CITATIONS
37	In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties. Computational Biology and Chemistry, 2018, 72, 136-149.	2.3	20
38	Identification of Bichalcones as Sirtuin Inhibitors by Virtual Screening and In Vitro Testing. Molecules, 2018, 23, 416.	3.8	20
39	Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part I: Xanthones, Quinones, Steroids, Coumarins, Phenolics and other Classes of Compounds. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 1092-1111.	1.7	18
40	The uniqueness and therapeutic value of natural products from West African medicinal plants, part II: terpenoids, geographical distribution and drug discovery. RSC Advances, 2014, 4, 35348-35370.	3.6	16
41	The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae. Natural Products and Bioprospecting, 2016, 6, 63-96.	4.3	16
42	Natural products in <i>Cyperus rotundus</i> L. (Cyperaceae): an update of the chemistry and pharmacological activities. RSC Advances, 2021, 11, 15060-15077.	3.6	15
43	Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Natural Products and Bioprospecting, 2021, 11, 611-628.	4.3	15
44	How "drug-like―are naturally occurring anti-cancer compounds?. Journal of Molecular Modeling, 2014, 20, 2069.	1.8	13
45	An enumeration of natural products from microbial, marine and terrestrial sources. Physical Sciences Reviews, 2020, 5, .	0.8	13
46	The chemistry and biological activities of natural products from Northern African plant families: from Aloaceae to Cupressaceae. RSC Advances, 2014, 4, 61975-61991.	3.6	12
47	Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico â€^Drug-Likeness'. Natural Products and Bioprospecting, 2014, 4, 243-249.	4.3	12
48	The uniqueness and therapeutic value of natural products from West African medicinal plants, part III: least abundant compound classes. RSC Advances, 2014, 4, 40095-40110.	3.6	11
49	Virtual Screening Identifies Chebulagic Acid as an Inhibitor of the M2(S31N) Viral Ion Channel and Influenza A Virus. Molecules, 2020, 25, 2903.	3.8	11
50	Antitumour, acute toxicity and molecular modeling studies of 4-(pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one against Ehrlich ascites carcinoma and sarcoma-180. Heliyon, 2018, 4, e00661.	3.2	10
51	Epigenetic modification, co-culture and genomic methods for natural product discovery. Physical Sciences Reviews, 2019, 4, .	0.8	10
52	Protease-inhibiting, molecular modeling and antimicrobial activities of extracts and constituents from Helichrysum foetidum and Helichrysum mechowianum (compositae). Chemistry Central Journal, 2015, 9, 32.	2.6	9
53	The chemistry and bioactivity of Southern African flora II: flavonoids, quinones and minor compound classes. RSC Advances, 2015, 5, 57704-57720.	3.6	9
54	Phytochemical and Ethnopharmacological Perspectives of Ehretia laevis. Molecules, 2021, 26, 3489.	3.8	9

#	Article	IF	CITATIONS
55	In search of therapeutic candidates for HIV/AIDS: rational approaches, design strategies, structure–activity relationship and mechanistic insights. RSC Advances, 2021, 11, 17936-17964.	3.6	9
56	Potential Natural Antimycobacterial Metabolites from Some Sub-Saharan Medicinal Plants. Anti-Infective Agents, 2014, 12, 178-190.	0.4	9
57	The chemistry and biological activities of natural products from Northern African plant families: from Ebenaceae to Solanaceae. RSC Advances, 2015, 5, 26580-26595.	3.6	8
58	Virtually Designed Triclosanâ€Based Inhibitors of Enoylâ€Acyl Carrier Protein Reductase of <i>Mycobacterium tuberculosis</i> and of <i>Plasmodium falciparum</i> . Molecular Informatics, 2015, 34, 292-307.	2.5	8
59	Fundamental physical and chemical concepts behind "drug-likeness―and "natural product-likeness― Physical Sciences Reviews, 2019, 4, .	0.8	8
60	Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling. Molecules, 2021, 26, 70.	3.8	8
61	Structurally simple synthetic 1, 4-disubstituted piperidines with high selectivity for resistant Plasmodium falciparum. BMC Pharmacology & Discology, 2018, 19, 42.	2.4	7
62	A primer on natural product-based virtual screening. Physical Sciences Reviews, 2019, 4, .	0.8	7
63	Anti-psoriatic and immunomodulatory evaluation of psorospermum febrifugum spach and its phytochemicals. Scientific African, 2020, 7, e00229.	1.5	7
64	Antioxidant potential of flavonoid glycosides from Manniophyton fulvum $M\tilde{A}^{1}/4$ ll. (Euphorbiaceae): Identification and molecular modeling. Scientific African, 2020, 8, e00423.	1.5	7
65	A computational multi-targeting approach for drug repositioning for psoriasis treatment. BMC Complementary Medicine and Therapies, 2021, 21, 193.	2.7	7
66	Perspectives on Tuberculosis Pathogenesis and Discovery of Anti-Tubercular Drugs. Current Medicinal Chemistry, 2014, 21, 3466-3477.	2.4	6
67	The chemistry and bioactivity of Southern African flora I: a bioactivity versus ethnobotanical survey of alkaloid and terpenoid classes. RSC Advances, 2015, 5, 43242-43267.	3.6	5
68	"Drug-likeness―properties of natural compounds. Physical Sciences Reviews, 2019, 4, .	0.8	5
69	Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies II: prediction tools and case studies. Physical Sciences Reviews, 2019, 4, .	0.8	4
70	Antiparasitic Sesquiterpenes from the Cameroonian Spice Scleria striatinux and Preliminary In Vitro and In Silico DMPK Assessment. Natural Products and Bioprospecting, 2017, 7, 235-247.	4.3	3
71	Fragment-based drug design of nature-inspired compounds. Physical Sciences Reviews, 2019, 4, .	0.8	3
72	Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop. Journal of Cheminformatics, 2021, 13, 64.	6.1	3

#	Article	IF	Citations
73	Structure-based virtual screening and molecular dynamics simulation studies to discover new SARS-CoV-2 main protease inhibitors. Scientific African, 2021, 14, e00970.	1.5	3
74	A computer-based approach for developing linamarase inhibitory agents. ChemistrySelect, 2020, 5, .	1.5	3
75	Fragment-based virtual screening discovers potential new Plasmodium PI4KIIIβ ligands. BMC Chemistry, 2022, 16, 19.	3.8	3
76	Finding alternatives to 5-fluorouracil: application of ensemble-based virtual screening for drug repositioning against human thymidylate synthase. Journal of Biomolecular Structure and Dynamics, 2022, , 1-17.	3.5	3
77	Molecular modeling of plant metabolites with anti-Onchocerca activity. Medicinal Chemistry Research, 2015, 24, 2127-2141.	2.4	2
78	4-aroylpiperidines and 4-(\hat{l} ±-hydroxyphenyl)piperidines as selective sigma-1 receptor ligands: synthesis, preliminary pharmacological evaluation and computational studies. Chemistry Central Journal, 2016, 10, 53.	2.6	2
79	Mechanistic role of plant-based bitter principles and bitterness prediction for natural product studies I: Database and methods. Physical Sciences Reviews, 2019, 4, .	0.8	2
80	Editorial to Special Issue—"Structure-Activity Relationships (SAR) of Natural Products― Molecules, 2021, 26, 250.	3.8	2
81	Editorial: Natural Product Epigenetic Modulators and Inhibitors. Frontiers in Pharmacology, 2021, 12, 651395.	3.5	2
82	Molecular mechanics approaches for rational drug design: forcefields and solvation models. ChemistrySelect, 2023, 8, 457-477.	1.5	2
83	Structural characterization of cassava linamarase-linamarin enzyme complex: an integrated computational approach. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9270-9278.	3.5	2
84	A Molecular Investigation of the Solvent Influence on Inter- and Intra-Molecular Hydrogen Bond Interaction of Linamarin. Processes, 2022, 10, 352.	2.8	2
85	11th German Conference on Chemoinformatics (GCC 2015). Journal of Cheminformatics, 2016, 8, 18.	6.1	1
86	An overview of tools, software, and methods for natural product fragment and mass spectral analysis. Physical Sciences Reviews, 2019, 4, .	0.8	1
87	Synthesis, Urease Inhibition and Molecular Modelling Studies of Novel Derivatives of the Naturally Occurring Î ² -Amyrenone. Natural Products and Bioprospecting, 2019, 9, 49-59.	4.3	1
88	Rational engineering of specialized metabolites in bacteria and fungi. ChemistrySelect, 2021, 6, 9-26.	1.5	1
89	A chemoinformatic analysis of atoms, scaffolds and functional groups in natural products. ChemistrySelect, 2023, 8, 1341-1365.	1.5	1
90	Chemical similarity methods for analyzing secondary metabolite structures. ChemistrySelect, 2021, 6, 247-264.	1.5	1

#	Article	IF	CITATIONS
91	Case studies on computer-based identification of natural products as lead molecules. ChemistrySelect, 2020, 5, .	1.5	1
92	Computer-Aided Design of Peptidomimetic Inhibitors of Falcipain-3: QSAR and Pharmacophore Models. Scientia Pharmaceutica, 2021, 89, 44.	2.0	1
93	Application of Computer Modeling to Drug Discovery: Case Study of PRK1 Kinase Inhibitors as Potential Drugs in Prostate Cancer Treatment. , 2017, , .		O
94	10. A primer on natural product-based virtual screening. , 2020, , 251-290.		0
95	The use of minimal topological differences to inspire the design of novel tetrahydroisoquinoline analogues with antimalarial activity. Heliyon, 2021, 7, e07032.	3.2	O
96	Editorial: Advanced chemoinformatics applications at the service of natural product discovery. ChemistrySelect, 2021, 6, 217-219.	1.5	0