List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7561631/publications.pdf Version: 2024-02-01

Δρλέλ Η Διν

#	Article	lF	CITATIONS
1	Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Scientific Reports, 2020, 10, 9736.	3.3	159
2	THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Materials Chemistry and Physics, 2009, 113, 382-384.	4.0	109
3	Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Advances, 2020, 10, 31765-31772.	3.6	109
4	Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics, 2019, 104, 102991.	1.7	104
5	Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Physica Scripta, 2020, 95, 035510.	2.5	103
6	Triâ€core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microwave and Optical Technology Letters, 2019, 61, 847-852.	1.4	96
7	BSCCO/SrTiO3 One Dimensional Superconducting Photonic Crystal for Many Applications. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1699-1703.	1.8	94
8	Defect mode properties in a one-dimensional photonic crystal. Physica B: Condensed Matter, 2012, 407, 120-125.	2.7	84
9	Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range. Journal of Applied Physics, 2009, 105, .	2.5	65
10	Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor. Applied Optics, 2020, 59, 3878.	1.8	64
11	Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectronics, 2019, 13, 118-123.	3.3	63
12	Metallic and Superconducting Photonic Crystal. Journal of Superconductivity and Novel Magnetism, 2008, 21, 421-425.	1.8	62
13	Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect. Optics Express, 2015, 23, 15038.	3.4	60
14	Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceramics International, 2019, 45, 19036-19043.	4.8	60
15	Modeling of a biosensor using Tamm resonance excited by graphene. Applied Optics, 2021, 60, 1411.	1.8	60
16	Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceramics International, 2020, 46, 365-369.	4.8	59
17	The Optical Properties of Metamaterial-Superconductor Photonic Band Gap With/Without Defect Layer. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1897-1902.	1.8	58
18	Preparation of hexagonal nanoporous Al2O3/TiO2/TiN as a novel photodetector with high efficiency. Scientific Reports, 2021, 11, 17572.	3.3	55

#	Article	IF	CITATIONS
19	Theoretical Study of a Tunable Low-Temperature Photonic Crystal Sensor Using Dielectric-Superconductor Nanocomposite Layers. Journal of Superconductivity and Novel Magnetism, 2020, 33, 2983-2990.	1.8	54
20	Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Optical and Quantum Electronics, 2020, 52, 1.	3.3	53
21	Cutoff frequency in metamaterials photonic crystals within Terahertz frequencies. International Journal of Modern Physics B, 2017, 31, 1750123.	2.0	51
22	Enhancement of phononic band gaps in ternary/binary structure. Physica B: Condensed Matter, 2012, 407, 4262-4268.	2.7	50
23	Optimized bio-photonic sensor using 1D-photonic crystals as a blood hemoglobin sensor. Physica Scripta, 2021, 96, 035501.	2.5	49
24	STUDY OF PHYSICAL PARAMETERS ON THE PROPERTIES OF PHONONIC BAND GAPS. International Journal of Modern Physics B, 2013, 27, 1350047.	2.0	48
25	Design of one dimensional defect based photonic crystal by composited superconducting material for bio sensing applications. Physica B: Condensed Matter, 2019, 572, 42-55.	2.7	48
26	THz cutoff frequency and multifunction Ti 2Ba2Ca2Cu3O10/GaAs photonic bandgap materials. International Journal of Modern Physics B, 2020, 34, 2050091.	2.0	48
27	Phononic crystals with one-dimensional defect as sensor materials. Indian Journal of Physics, 2017, 91, 1021-1028.	1.8	47
28	The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal. Journal of Applied Physics, 2018, 123, .	2.5	46
29	Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal. Physica C: Superconductivity and Its Applications, 2016, 528, 5-8.	1.2	45
30	Novel Biosensor Detection of Tuberculosis Based on Photonic Band Gap Materials. Materials Research, 2021, 24, .	1.3	45
31	Dielectric and Superconducting Photonic Crystals. Journal of Superconductivity and Novel Magnetism, 2013, 26, 553-560.	1.8	44
32	Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals. Applied Optics, 2020, 59, 4796.	1.8	44
33	Thermal properties and two-dimensional photonic band gaps. Journal of Modern Optics, 2014, 61, 385-389.	1.3	42
34	Superconductor-Semiconductor Metamaterial Photonic Crystals. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1981-1986.	1.8	42
35	Comparative Study of the One Dimensional Dielectric and Metallic Photonic Crystals. Optics and Photonics Journal, 2012, 02, 105-112.	0.4	41
36	Fano resonance based defected 1D phononic crystal for highly sensitive gas sensing applications. Scientific Reports, 2020, 10, 17979.	3.3	40

#	Article	IF	CITATIONS
37	Plasma cell sensor using photonic crystal cavity. Optical and Quantum Electronics, 2021, 53, 591.	3.3	39
38	Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. International Journal of Modern Physics B, 2021, 35, 2150012.	2.0	39
39	Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. AEJ - Alexandria Engineering Journal, 2020, 59, 5045-5052.	6.4	38
40	Detection of Reproductive Hormones in Females by Using 1D Photonic Crystal-Based Simple Reconfigurable Biosensing Design. Crystals, 2021, 11, 1533.	2.2	37
41	Tunability of defective one-dimensional photonic crystals based on Faraday effect. Journal of Modern Optics, 2017, 64, 871-877.	1.3	36
42	Tunable properties of one-dimensional photonic crystals that incorporate a defect layer of a magnetized plasma. International Journal of Modern Physics B, 2017, 31, 1750239.	2.0	36
43	Ionizing particle detection based on phononic crystals. Journal of Applied Physics, 2015, 118, .	2.5	35
44	Superconductor Nanometallic Photonic Crystals as a Novel Smart Window for Low-Temperature Applications. Journal of Superconductivity and Novel Magnetism, 2019, 32, 191-197.	1.8	35
45	Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Advances, 2021, 11, 26655-26665.	3.6	34
46	Tuning the flow of light in two-dimensional metallic photonic crystals based on Faraday effect. Journal of Modern Optics, 2017, 64, 74-80.	1.3	33
47	Fano Resonance by Means of the One-Dimensional Superconductor Photonic Crystals. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3827-3833.	1.8	32
48	Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals. Applied Nanoscience (Switzerland), 2021, 11, 2261-2270.	3.1	32
49	Highly Sensitive Salinity and Temperature Sensor Using Tamm Resonance. Plasmonics, 2021, 16, 2315-2325.	3.4	32
50	Tamm Plasmon Polariton as Refractive Index Sensor Excited by Gyroid Metals/Porous Ta2O5 Photonic Crystal. Plasmonics, 0, , 1.	3.4	32
51	Detection of Fat Concentration in Milk Using Ternary Photonic Crystal. Silicon, 2022, 14, 6063-6073.	3.3	31
52	Gyroidal graphene/porous silicon array for exciting optical Tamm state as optical sensor. Scientific Reports, 2021, 11, 19389.	3.3	31
53	The properties of cutoff frequency in two-dimensional superconductor photonic crystals. Journal of Modern Optics, 2014, 61, 1064-1068.	1.3	30
54	Acoustic Wave Sensor Based on Piezomagnetic Phononic Crystal. Journal of Superconductivity and Novel Magnetism, 2018, 31, 4173-4177.	1.8	30

#	Article	lF	CITATIONS
55	One-dimensional phononic crystals that incorporate a defective piezoelectric/piezomagnetic as a new sensor. European Physical Journal B, 2018, 91, 1.	1.5	30
56	Enhancement of the solar cell based on nanophotonic crystals. Journal of Nanophotonics, 2017, 11, 1.	1.0	30
57	Nonlinear polarization in metal nanocomposite system based photonic crystals. Optik, 2019, 176, 78-84.	2.9	29
58	Gyroidal graphene for exciting tamm plasmon polariton as refractive index sensor: Theoretical study. Optical Materials, 2021, 122, 111684.	3.6	29
59	Ultra-sensitive acoustic biosensor based on a 1D phononic crystal. Physica Scripta, 2020, 95, 075704.	2.5	28
60	Versatile photonic band gap materials for water desalination. Optik, 2020, 219, 165160.	2.9	28
61	Remote Temperature Sensor Based on Tamm Resonance. Silicon, 2022, 14, 2765-2777.	3.3	28
62	Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Optical and Quantum Electronics, 2022, 54, 1.	3.3	28
63	MATLAB Simulation-Based Theoretical Study for Detection of a Wide Range of Pathogens Using 1D Defective Photonic Structure. Crystals, 2022, 12, 220.	2.2	28
64	1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Physica Scripta, 2021, 96, 125533.	2.5	28
65	Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic Crystals. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1615-1621.	1.8	27
66	Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures. Chinese Physics B, 2016, 25, 114301.	1.4	27
67	Tunable high Tc superconducting photonic band gap resonators based on hybrid quasi-periodic multilayered stacks. Physica C: Superconductivity and Its Applications, 2020, 576, 1353706.	1.2	27
68	Novel spider web photonic crystal fiber for robust mode transmission applications with supporting orbital angular momentum transmission property. Optical and Quantum Electronics, 2020, 52, 1.	3.3	27
69	Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC Advances, 2021, 11, 32973-32980.	3.6	27
70	The impact of magnetized cold plasma and its various properties in sensing applications. Scientific Reports, 2022, 12, 3754.	3.3	27
71	Employing the Defective Photonic Crystal Composed of Nanocomposite Superconducting Material in Detection of Cancerous Brain Tumors Biosensor: Computational Study. Crystals, 2022, 12, 540.	2.2	27
72	Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater. Materials, 2022, 15, 4012.	2.9	27

#	Article	IF	CITATIONS
73	Simple and efficient design towards a significant improvement of the optical absorption of amorphous silicon solar cell. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 275, 107890.	2.3	26
74	Preparation and characterization of a high-efficiency photoelectric detector composed of hexagonal Al2O3/TiO2/TiN/Au nanoporous array. Materials Science in Semiconductor Processing, 2022, 139, 106348.	4.0	26
75	Two dimensional tunable photonic crystals and n doped semiconductor materials. Materials Chemistry and Physics, 2015, 160, 221-226.	4.0	25
76	Terahertz frequency superconductor-nanocomposite photonic band gap. International Journal of Modern Physics B, 2018, 32, 1850056.	2.0	25
77	Metamaterial Control of Hybrid Multifunctional High-Tc Superconducting Photonic Crystals for 1D Quasi-periodic Structure Potential Applications. Materials Research, 2020, 23, .	1.3	25
78	Modulation of the Band Gaps of Phononic Crystals with Thermal Effects. International Journal of Thermophysics, 2015, 36, 2967-2984.	2.1	24
79	Graphene deposited liquid crystal and thermal sensitivity using photonic crystals. Physica Scripta, 2021, 96, 035503.	2.5	24
80	Numerical optimization of 1D superconductor photonic crystals pressure sensor for low temperatures applications. Solid State Communications, 2022, 343, 114671.	1.9	24
81	Tamm resonance excited by different metals/graphene. Photonics and Nanostructures - Fundamentals and Applications, 2022, 49, 100995.	2.0	24
82	Salinity optical sensor by using two-dimensional photonic crystals: computational study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115169.	3.5	23
83	Photonic Crystal Enhanced by Metamaterial for Measuring Electric Permittivity in GHz Range. Photonics, 2021, 8, 416.	2.0	22
84	ELECTROMAGNETIC WAVE PROPAGATION CHARACTERISTICS IN A ONE-DIMENSIONAL METALLIC PHOTONIC CRYSTAL. Journal of Nonlinear Optical Physics and Materials, 2008, 17, 255-264.	1.8	21
85	Evolution of Phononic Band Gaps in One-Dimensional Phononic Crystals that Incorporate High-T c Superconductor and Magnetostrictive Materials. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2711-2716.	1.8	21
86	Optical properties of one-dimensional defective photonic crystal containing nanocomposite material. Journal of Nonlinear Optical Physics and Materials, 2017, 26, 1750007.	1.8	21
87	Transmittance properties of a quasi-periodic one-dimensional photonic crystals that incorporate nanocomposite material. International Journal of Modern Physics B, 2018, 32, 1850220.	2.0	21
88	Thermal properties of one-dimensional piezoelectric phononic crystal. European Physical Journal B, 2018, 91, 1.	1.5	20
89	Development of the Monolayer Silicon Solar Cell Based on Photonic Crystals. Silicon, 2019, 11, 1377-1382.	3.3	20
90	Transmittance properties of one-dimensional metallic-dielectric photonic crystals in near-zero permittivity. Physica Scripta, 2019, 94, 125501.	2.5	20

#	Article	lF	CITATIONS
91	Theoretical and simulation study in defective semiconductor layer that incorporated with superconducting-dielectric photonic crystal. International Journal of Modern Physics B, 2019, 33, 1950397.	2.0	20
92	Defected Photonic Crystal Array Using Porous GaN as Malaria Sensor. IOP Conference Series: Materials Science and Engineering, 2021, 1171, 012005.	0.6	20
93	Novel smart window using photonic crystal for energy saving. Scientific Reports, 2022, 12, .	3.3	20
94	Propagation of acoustic waves in 2D periodic and quasiperiodic phononic crystals. International Journal of Modern Physics B, 2017, 31, 1750147.	2.0	19
95	Electro-optical tenability properties of defective one-dimensional photonic crystal. Optik, 2017, 145, 121-129.	2.9	19
96	One-Dimensional Metallo-Superconductor Photonic Crystals as a Smart Window. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2313-2318.	1.8	19
97	Optical properties of photonic crystals based on graphene nanocomposite within visible and IR wavelengths. Optical and Quantum Electronics, 2020, 52, 1.	3.3	19
98	Tunable PBGs with a cutoff frequency feature in Fibonacci quasi-periodic designs containing a superconductor material at THz region. Physica Scripta, 2021, 96, 105501.	2.5	19
99	The Design and Optimization of an Anti-Reflection Coating and an Intermediate Reflective Layer to Enhance Tandem Solar Cell Photons Capture. Crystals, 2022, 12, 57.	2.2	18
100	The transmittance of two types of one-dimensional periodic structures. Materials Chemistry and Physics, 2009, 115, 391-394.	4.0	17
101	PHOTONIC BAND GAP MATERIALS AND MONOLAYER SOLAR CELL. Surface Review and Letters, 2018, 25, 1850103.	1.1	17
102	A defective one-dimensional superconducting photonic crystal design for the generation of the Fano resonance feature. Physica Scripta, 2020, 95, 115503.	2.5	17
103	Theoretical study of one-dimensional defect photonic crystal as a high-performance sensor for water-borne bacteria. Optical and Quantum Electronics, 2021, 53, 1.	3.3	17
104	Optical Properties of New Type of Superconductor-Semiconductor Metamaterial Photonic Crystals. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3453-3457.	1.8	16
105	Towards a highly efficient air purifier using annular photonic crystals in UV regimes. RSC Advances, 2021, 11, 14915-14921.	3.6	16
106	Photonic crystal defective superconductor and black body radiations. Optical and Quantum Electronics, 2018, 50, 1.	3.3	15
107	Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals. Chinese Physics B, 2018, 27, 094301.	1.4	15
108	Glycine sensor based on 1D defective phononic crystal structure. Optical and Quantum Electronics, 2020, 52, 1.	3.3	15

#	Article	IF	CITATIONS
109	Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal. Photonics, 2021, 8, 150.	2.0	15
110	Transmission and Temperature Sensing Characteristics of a Binary and Ternary Photonic Band Gap. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 9-14.	0.5	15
111	Cas sensing applications using magnetized cold plasma multilayers. Optical and Quantum Electronics, 2022, 54, 1.	3.3	15
112	Textured concave anti-reflecting coating and convex back reflector to enhance the absorbance of amorphous Si solar cells. Physica Scripta, 2022, 97, 055503.	2.5	15
113	A Comparative study of the effective surface impedance of an HTc superconducting thin film from visible to mid-IR region. Optical and Quantum Electronics, 2021, 53, 1.	3.3	14
114	Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals, 2022, 12, 650.	2.2	14
115	The optical transmission characteristics in metallic photonic crystals. Materials Chemistry and Physics, 2010, 124, 856-860.	4.0	13
116	PIEZOELECTRIC MATERIAL AND ONE-DIMENSIONAL PHONONIC CRYSTAL. Surface Review and Letters, 2019, 26, 1850144.	1.1	13
117	High-performance liquid sensor based one-dimensional phononic crystal with demultiplexing capability. Materials Today Communications, 2021, 26, 102045.	1.9	13
118	Salinity Sensor Based on 1D Photonic Crystals by Tamm Resonance with Different Geometrical Shapes. Plasmonics, 2022, 17, 409-422.	3.4	12
119	Glucose sensor modeling based on Fano resonance excitation in titania nanotube photonic crystal coated by titanium nitride as a plasmonic material. Applied Optics, 2022, 61, 1668.	1.8	12
120	Study of Optical Transmission in Nanometallic Photonic Crystal. Journal of Computational and Theoretical Nanoscience, 2008, 5, 597-601.	0.4	11
121	Plasmonic metasurfaces for subtractive color filtering: optimized nonlinear regression models. Optics Letters, 2018, 43, 4815.	3.3	11
122	Scattering spectra of magneto-plasmonic core/shell nanoparticle based on Mie theory. Materials Research Express, 2019, 6, 085073.	1.6	10
123	The transmissivity of one-dimensional photonic crystals comprising three phases nanocomposite layer for optical switching purposes. Physica Scripta, 2021, 96, 115504.	2.5	10
124	Phonon Conductivity of Nanoparticles Embedded in Dielectric Material. Physica Status Solidi (B): Basic Research, 2018, 255, 1700681.	1.5	9
125	High-performance phoxonic cavity designs for enhanced acousto-optical interaction. Applied Optics, 2021, 60, 3224.	1.8	9
126	Quantum Transport in a Superconductor-Semiconductor Mesoscopic System. Physica Status Solidi (B): Basic Research. 2002, 232, 283-287.	1.5	8

#	Article	IF	CITATIONS
127	Effects of Andreev reflection on the conductance of quantum chaotic dots. Physical Review B, 2009, 79, .	3.2	8
128	Polarization Modes Control on the Transmittance Characteristics of One Dimensional Photonic Crystal. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1916-1919.	0.4	8
129	Effective surface impedance of a high temperature superconductor. Physica C: Superconductivity and Its Applications, 2013, 495, 126-129.	1.2	8
130	INCREASE IN THE REFLECTED INTENSITY OF X-RAY FILMS USING PHOTONIC CRYSTALS. Surface Review and Letters, 2017, 24, 1750106.	1.1	8
131	Ag/GaN One Dimensional Photonic Crystal for Many Applications. Journal of Computational and Theoretical Nanoscience, 2012, 9, 592-596.	0.4	7
132	Multilayer angular optical filter as a smart window. Indian Journal of Physics, 2020, 94, 95-103.	1.8	7
133	Towards Promising Platform by Using Annular Photonic Crystals to Simulate and Design Useful Mask. Photonics, 2021, 8, 349.	2.0	7
134	ELECTRON SPIN DYNAMICS THROUGH FERROMAGNETIC QUANTUM POINT CONTACT. International Journal of Nanoscience, 2007, 06, 41-44.	0.7	6
135	CR-39 Track Detector as a Photonic Crystal. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1527-1531.	0.4	6
136	Tunable filter based on the 1D photonic crystal within ultraviolet radiations. IOP Conference Series: Materials Science and Engineering, 2020, 956, 012010.	0.6	6
137	Hydrostatic pressure effects for controlling the phononic band gap properties in a perfect phononic crystal. Optical and Quantum Electronics, 2022, 54, 1.	3.3	6
138	Tunable photonic bandgap and reflection phase shift properties of 1D binary photonic crystal consisting of double negative and magnetic cold plasma materials. Physics of Plasmas, 2022, 29, .	1.9	6
139	DETECTION AND DISCRIMINATION BETWEEN ALPHA PARTICLES AND PROTONS BASED ON PHONONIC CRYSTALS MATERIALS. Surface Review and Letters, 2019, 26, 1850219.	1.1	5
140	Magnetic field induced multichannel tunable filter properties of photonic band gap materials. IOP Conference Series: Materials Science and Engineering, 2021, 1171, 012012.	0.6	5
141	STUDY OF THE ANOMALY PHENOMENA FOR THE HYBRID SUPERCONDUCTOR-SEMICONDUCTOR JUNCTIONS. International Journal of Modern Physics B, 2006, 20, 2305-2312.	2.0	4
142	CONTROL OF THz TRANSMISSION THROUGH METALLIC PHOTONIC CRYSTALS. International Journal of Modern Physics B, 2009, 23, 2297-2301.	2.0	4
143	Glucose and Hydrogen Peroxide Concentration Measurement using 1D Defective Phononic Crystal Sensor. Plasmonics, 2021, 16, 1755-1763.	3.4	4
144	Tunability and Fano Resonance Properties in Different Types of One-Dimensional Superconductor Photonic Crystals. Materials Research, 2021, 24, .	1.3	4

#	Article	lF	CITATIONS
145	Improve the Efficiency of Scintillation Detectors Using Reflectors Based on Photonic Crystals Arrays. Journal of Electromagnetic Analysis and Applications, 2014, 06, 25-29.	0.2	4
146	SUPERCONDUCTING QUANTUM POINT CONTACTS AND MAXWELL POTENTIAL. Modern Physics Letters B, 2007, 21, 703-715.	1.9	3
147	Quantum Transport and Photon-Assisted Andreev Reflection in Superconductor–Semiconductor Interface. Journal of Computational and Theoretical Nanoscience, 2008, 5, 2160-2163.	0.4	3
148	Electro-Thermal Transport in Quantum Point Contact Nanodevice. International Journal of Thermophysics, 2009, 30, 661-668.	2.1	3
149	Optimizing photonic and phononic crystal parameters for sensing organic compounds. Applied Nanoscience (Switzerland), 2021, 11, 2703-2716.	3.1	3
150	Theoretical Study on Polycarbonate-Based One-Dimensional Ternary Photonic Structures from Far-Ultraviolet to Near-Infrared Regions of Electromagnetic Spectrum. Crystals, 2022, 12, 642.	2.2	3
151	Externally tunable multichannel filtering applications of organic material based 1D magnetic cold-plasma photonic crystals. RSC Advances, 2022, 12, 14849-14857.	3.6	3
152	Evolution of Low-Frequency Band Gaps Using X-Shapes and Single-Sided Stubbed Phononic Crystals. Mechanics of Solids, 2020, 55, 292-300.	0.7	2
153	Fano Resonance Properties in (K ₃ C ₆ 0 /) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 Conference Series: Materials Science and Engineering, 2020, 956, 012004.	0 427 Td (0.6	HgBa _{2 2}
154	THE PHOTON-ASSISTED TRANSPORT AND MAXWELL POTENTIAL. International Journal of Modern Physics B, 2008, 22, 3405-3412.	2.0	1
155	Numerical Studies on Electromagnetic Waves Properties in Metallic-Dielectric Photonic Crystal. Journal of Electromagnetic Analysis and Applications, 2011, 03, 465-470.	0.2	1
156	Metallic-Dielectric Periodic Structure and Defect Mode Characterizations. Journal of Computational and Theoretical Nanoscience, 2012, 9, 2045-2051.	0.4	1
157	Studying the effect of low doses of gamma and beta irradiations on graphene oxide samples. Radiation Physics and Chemistry, 2020, 173, 108941.	2.8	1
158	Production of intensifying blue light by Cherenkov radiation phenomena and its application as a power source. Optical and Quantum Electronics, 2022, 54, 1.	3.3	1
159	Designing plasmonic metasurface absorbers with desirable absorption values for different thermal applications. Physica Scripta, 2022, 97, 055504.	2.5	1
160	Comparative study of 1D defective photonic structures composed of single and double defect layers. International Journal of Modern Physics B, 2022, 36, .	2.0	1
161	Study of optical properties of metallic photonic crystal. Proceedings of SPIE, 2007, 6722, 450.	0.8	0
162	Electron Transport and Josephson-Conductance in Mesoscopic Systems. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1127-1130.	0.4	0

#	Article	IF	CITATIONS
163	Thermal Conductance and Seebeck Effect in Mesoscopic Systems. International Journal of Thermophysics, 2015, 36, 2845-2853.	2.1	0
164	Optimization of plasmonic metasurfaces for subtractive color filtering. , 2018, , .		0
165	Phononic Crystals and Thermal Effects. , 2019, , .		Ο
166	MODELING OF THE DIFFERENTIAL CONDUCTANCE OF MESOSCOPIC SYSTEM: THEORY AND SIMULATION. , 2001, , .		0
167	CONDUCTANCE ENHANCEMENT OF A SEMICONDUCTOR (2DEG)–SUPERCONDUCTOR MESOSCOPIC JUNCTION. , 2005, , .		0
168	Spin-Dependent Conductance in Mesoscopic System. Journal of Computational and Theoretical Nanoscience, 2008, 5, 328-330.	0.4	0
169	Acoustic wave frequency filtering in constant total length phononic crystals of Al/Pb multilayer. International Journal of Modern Physics B, 2021, 35, .	2.0	0
170	Improving the efficiency counting of Cherenkov detector by using high transmittance photonic crystal materials. Optical and Quantum Electronics, 2022, 54, .	3.3	0
171	Evaluating the effect of different photon beams on intensity modulated radiation therapy for liver cancer. International Journal of Modern Physics B, O, , .	2.0	0