
Irwin D Bernstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7561613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficacy and Safety of Gemtuzumab Ozogamicin in Patients With CD33-Positive Acute Myeloid Leukemia in First Relapse. Journal of Clinical Oncology, 2001, 19, 3244-3254.	1.6	837
2	Endothelial Cells Are Essential for the Self-Renewal and Repopulation of Notch-Dependent Hematopoietic Stem Cells. Cell Stem Cell, 2010, 6, 251-264.	11.1	582
3	Gemtuzumab Ozogamicin, A Potent and Selective Anti-CD33 Antibodyâ ''Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Bioconjugate Chemistry, 2002, 13, 47-58.	3.6	506
4	Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33â€positive acute myeloid leukemia in first recurrence. Cancer, 2005, 104, 1442-1452.	4.1	429
5	Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood, 2001, 97, 3197-3204.	1.4	314
6	Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood, 2012, 119, 6198-6208.	1.4	273
7	Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood, 2005, 106, 2693-2699.	1.4	257
8	Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood, 2003, 101, 1784-1789.	1.4	244
9	An Anti-CD33 Antibodyâ^'Calicheamicin Conjugate for Treatment of Acute Myeloid Leukemia. Choice of Linker. Bioconjugate Chemistry, 2002, 13, 40-46.	3.6	209
10	CD33 expression and P-glycoprotein–mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood, 2007, 109, 4168-4170.	1.4	176
11	A phase I/II trial of iodine-131–tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood, 2000, 96, 2934-2942.	1.4	173
12	Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nature Protocols, 2017, 12, 15-31.	12.0	158
13	THE USE OF RADIOLABELED ANTI-CD33 ANTIBODY TO AUGMENT MARROW IRRADIATION PRIOR TO MARROW TRANSPLANTATION FOR ACUTE MYELOGENOUS LEUKEMIA. Transplantation, 1992, 54, 829-833.	1.0	153
14	Gemtuzumab ozogamicin for acute myeloid leukemia. Blood, 2017, 130, 2373-2376.	1.4	130
15	CD33 Splicing Polymorphism Determines Gemtuzumab Ozogamicin Response in De Novo Acute Myeloid Leukemia: Report From Randomized Phase III Children's Oncology Group Trial AAML0531. Journal of Clinical Oncology, 2017, 35, 2674-2682.	1.6	120
16	Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. Journal of Experimental Medicine, 2005, 201, 1361-1366.	8.5	116
17	CD33 Expression and Its Association With Gemtuzumab Ozogamicin Response: Results From the Randomized Phase III Children's Oncology Group Trial AAML0531. Journal of Clinical Oncology, 2016, 34, 747-755.	1.6	116
18	Notch2 governs the rate of generation of mouse long- and short-term repopulating stem cells. Journal of Clinical Investigation, 2011, 121, 1207-1216.	8.2	113

IRWIN D BERNSTEIN

#	Article	IF	CITATIONS
19	NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nature Communications, 2018, 9, 1828.	12.8	97
20	Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood, 2012, 119, 3705-3711.	1.4	91
21	Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros–derived hematopoietic stem cells. Journal of Clinical Investigation, 2015, 125, 2032-2045.	8.2	74
22	Inhibition of Î ² -catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development (Cambridge), 2015, 142, 3198-209.	2.5	64
23	FLT3 internal tandem duplication in CD34+/CD33- precursors predicts poor outcome in acute myeloid leukemia. Blood, 2006, 108, 2764-2769.	1.4	63
24	Food aversions in children receiving chemotherapy for cancer. Cancer, 1982, 50, 2961-2963.	4.1	53
25	Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Reports, 2021, 36, 109675.	6.4	50
26	M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion. Blood Advances, 2018, 2, 859-870.	5.2	45
27	A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells. Stem Cell Reports, 2017, 8, 1563-1572.	4.8	41
28	CD33 as a Target for Selective Ablation of Acute Myeloid Leukemia. Clinical Lymphoma and Myeloma, 2002, 2, S9-S11.	2.1	37
29	Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. ELife, 2015, 4, .	6.0	30
30	Infusion of a non-HLA-matched ex-vivo expanded cord blood progenitor cell product after intensive acute myeloid leukaemia chemotherapy: a phase 1 trial. Lancet Haematology,the, 2016, 3, e330-e339.	4.6	26
31	Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Reports, 2016, 17, 3178-3192.	6.4	25
32	Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics. Nature Communications, 2022, 13, 1584.	12.8	23
33	Maturation of hematopoietic stem cells from prehematopoietic stem cells is accompanied by up-regulation of PD-L1. Journal of Experimental Medicine, 2018, 215, 645-659.	8.5	19
34	Regulation of colony forming cell generation by fltâ€3 ligand. British Journal of Haematology, 1996, 94, 17-22.	2.5	18
35	Clinical Strategies to Enhance Posttransplant Immune Reconstitution. Biology of Blood and Marrow Transplantation, 2008, 14, 94-99.	2.0	17
36	Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential exÂvivo. Experimental Hematology, 2017, 51, 25-35.e6.	0.4	16

IRWIN D BERNSTEIN

#	Article	IF	CITATIONS
37	Prospects for monoclonal antibody therapy of leukemia and lymphoma. Cancer, 1986, 58, 584-589.	4.1	15
38	Effect of Interleukin-2 on Biodistribution of Monoclonal Antibody in Tumor and Normal Tissues in Mice Bearing SL-2 Thymoma. Journal of the National Cancer Institute, 1992, 84, 109-113.	6.3	13
39	Post therapy imaging in high dose I-131 radioimmunotherapy patients. Medical Physics, 1994, 21, 1157-1162.	3.0	13
40	GATA-1 is expressed in acute erythroblastic leukaemia. British Journal of Haematology, 1994, 86, 410-412.	2.5	10
41	Clonal Analysis of Embryonic Hematopoietic Stem Cell Precursors Using Single Cell Index Sorting Combined with Endothelial Cell Niche Co-culture. Journal of Visualized Experiments, 2018, , .	0.3	6
42	Notch blockade overcomes endothelial cell-mediated resistance of FLT3/ITD-positive AML progenitors to AC220 treatment. Leukemia, 2021, 35, 601-605.	7.2	3
43	Culture of CD34+ Umbilical Cord Blood Progenitors with Notch Ligand Results in Enhanced and More Rapid Human Engraftment in a Preclinical NOD/SCID Mouse Model Blood, 2005, 106, 190-190.	1.4	3
44	The Interaction of the Wnt and Notch Pathways Modulates NK vs. T Cell Commitment Blood, 2005, 106, 765-765.	1.4	1
45	Inaccessible LCG Promoters Act as Safeguards to Restrict T Cell Development to Appropriate Notch Signaling Environments. Stem Cell Reports, 2021, 16, 717-726.	4.8	0
46	The Role of Notch in Vascular Endothelial Cell-Mediated Protection of AML Precursors from Targeted Therapy. Blood, 2016, 128, 2750-2750.	1.4	0
47	Antibody-targeted therapy. , 0, , 639-647.		0