
Marco Buongiorno Nardelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7560721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tonal harmony and the topology of dynamical score networks. Journal of Mathematics and Music, 2023, 17, 198-212.	0.4	1
2	Two-Layer High-Throughput: Effective Mass Calculations Including Warping. Engineering, 2022, 10, 74-80.	6.7	2
3	Relaxation time approximations in PAOFLOW 2.0. Scientific Reports, 2022, 12, 4993.	3.3	9
4	Quantum algorithm for electronic band structures with local tight-binding orbitals. Scientific Reports, 2022, 12, .	3.3	1
5	Networks of materials: Construction and structural analysis. AICHE Journal, 2021, 67, e17051.	3.6	2
6	MUSICNTWRK: Data Tools for Music Theory, Analysis and Composition. Lecture Notes in Computer Science, 2021, , 190-215.	1.3	1
7	Hyperbolic Metamaterials with Extreme Mechanical Hardness. Advanced Optical Materials, 2021, 9, 2001904.	7.3	6
8	Discovery of higher-order topological insulators using the spin Hall conductivity as a topology signature. Npj Computational Materials, 2021, 7, .	8.7	15
9	Advanced modeling of materials with PAOFLOW 2.0: New features and software design. Computational Materials Science, 2021, 200, 110828.	3.0	21
10	Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride. Nature Electronics, 2021, 4, 740-747.	26.0	62
11	A systematic variational approach to band theory in a quantum computer. RSC Advances, 2021, 11, 39438-39449.	3.6	4
12	Topology of Networks in Generalized Musical Spaces. Leonardo Music Journal, 2020, 30, 38-43.	0.1	3
13	Quantum computation of silicon electronic band structure. Physical Chemistry Chemical Physics, 2020, 22, 21816-21822.	2.8	13
14	Role of quantum confinement and interlayer coupling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Crl<mml:mn>3</mml:mn></mml:mi </mml:msub> -graphene magnetic tunnel junctions. Physical Review B, 2020, 101, .</mml:math 	3.2	29
15	Vibrational spectral fingerprinting for chemical recognition of biominerals. ChemPhysChem, 2020, 21, 770-778.	2.1	9
16	Spin Hall effect in prototype Rashba ferroelectrics GeTe and SnTe. Npj Computational Materials, 2020, 6, .	8.7	26
17	Ultrathin SnTe films as a route towards all-in-one spintronics devices. 2D Materials, 2020, 7, 025026.	4.4	24
18	High-Throughput Computational Search for Half-Metallic Oxides. Molecules, 2020, 25, 2010.	3.8	1

#	Article	IF	CITATIONS
19	The AFLOW Fleet for Materials Discovery. , 2020, , 1785-1812.		4
20	The 2019 materials by design roadmap. Journal Physics D: Applied Physics, 2019, 52, 013001.	2.8	236
21	Toward Realistic Amorphous Topological Insulators. Nano Letters, 2019, 19, 8941-8946.	9.1	44
22	Thermoelectric Properties of Minerals with the Mawsonite Structure. ACS Applied Energy Materials, 2019, 2, 8068-8078.	5.1	9
23	Mechanical Properties of Chemically Modified Clay. Scientific Reports, 2019, 9, 13698.	3.3	9
24	Coordination corrected ab initio formation enthalpies. Npj Computational Materials, 2019, 5, .	8.7	38
25	Giant spin Hall effect in two-dimensional monochalcogenides. 2D Materials, 2019, 6, 025012.	4.4	30
26	The AFLOW Fleet for Materials Discovery. , 2019, , 1-28.		0
27	AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids. Physical Review Materials, 2019, 3, .	2.4	8
28	Absorption and emission modulation in a MoS ₂ –GaN (0001) heterostructure by interface phonon–exciton coupling. Photonics Research, 2019, 7, 1511.	7.0	10
29	Leonardo Gallery: Scientific Delirium Madness 4.0. Leonardo, 2018, 51, 227-238.	0.3	2
30	Spinodal Superlattices of Topological Insulators. Chemistry of Materials, 2018, 30, 2331-2340.	6.7	8
31	PAOFLOW: A utility to construct and operate on ab initio Hamiltonians from the projections of electronic wavefunctions on atomic orbital bases, including characterization of topological materials. Computational Materials Science, 2018, 143, 462-472.	3.0	74
32	The AFLOW Fleet for Materials Discovery. , 2018, , 1-28.		9
33	Controlling Topological States in Topological/Normal Insulator Heterostructures. ACS Omega, 2018, 3, 15900-15906.	3.5	10
34	First principles study of the optical emission of cadmium yellow: Role of cadmium vacancies. AIP Advances, 2018, 8, .	1.3	12
35	An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library. Npj Computational Materials, 2017, 3, .	8.7	65
36	Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics Condensed Matter, 2017, 29, 465901.	1.8	4,303

#	Article	IF	CITATIONS
37	Systematic Band Gap Tuning of BaSnO ₃ via Chemical Substitutions: The Role of Clustering in Mixed-Valence Perovskites. Chemistry of Materials, 2017, 29, 9378-9385.	6.7	27
38	AFLUX: The LUX materials search API for the AFLOW data repositories. Computational Materials Science, 2017, 137, 362-370.	3.0	56
39	High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity. Scripta Materialia, 2017, 129, 88-93.	5.2	40
40	The Maximum Edge Weight Clique Problem: Formulations and Solution Approaches. Springer Optimization and Its Applications, 2017, , 217-237.	0.9	9
41	AFLOWÏ€: A minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136, 76-84.	3.0	70
42	Improved electronic structure and magnetic exchange interactions in transition metal oxides. Journal of Physics Condensed Matter, 2017, 29, 444003.	1.8	28
43	Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 2017, 1, .	2.4	47
44	High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation. Computational Materials Science, 2016, 125, 82-91.	3.0	51
45	First-principles simulations of PVDF copolymers with high dielectric energy density: PVDF-HFP and PVDF-BTFE. Physical Review B, 2016, 94, .	3.2	7
46	Accurate tight-binding Hamiltonian matrices from <i>ab initio</i> calculations: Minimal basis sets. Physical Review B, 2016, 93, .	3.2	43
47	Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Physical Review B, 2016, 93, .	3.2	40
48	Accurate <i>ab initio</i> tight-binding Hamiltonians: Effective tools for electronic transport and optical spectroscopy from first principles. Physical Review B, 2016, 94, .	3.2	25
49	First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides. Physical Chemistry Chemical Physics, 2016, 18, 5005-5011.	2.8	13
50	The AFLOW standard for high-throughput materials science calculations. Computational Materials Science, 2015, 108, 233-238.	3.0	244
51	Atomistic simulations of aromatic polyurea and polyamide for capacitive energy storage. Physical Review B, 2015, 92, .	3.2	9
52	Improved predictions of the physical properties of Zn- and Cd-based wide band-gap semiconductors: A validation of the ACBNO functional. Physical Review B, 2015, 91, .	3.2	56
53	Reformulation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mi> DFT </mml:mi> <mml:mo> + </mml:mo> <mml:mi> U </mml:mi> a Pseudohybrid Hubbard Density Functional for Accelerated Materials Discovery. Physical Review X, 2015. 5.</mml:mrow></mml:math>	w>8.9	math>as
54	FORMATION AND PROPERTIES OF ASTROPHYSICAL CARBONACEOUS DUST. I. AB-INITIO CALCULATIONS OF THE CONFIGURATION AND BINDING ENERGIES OF SMALL CARBON CLUSTERS. Astrophysical Journal, 2015, 800, 30.	4.5	17

#	Article	IF	CITATIONS
55	Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires. RSC Advances, 2015, 5, 44865-44872.	3.6	16
56	Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nature Materials, 2015, 14, 1223-1228.	27.5	587
57	High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model. Physical Review B, 2014, 90, .	3.2	230
58	A RESTful API for exchanging materials data in the AFLOWLIB.org consortium. Computational Materials Science, 2014, 93, 178-192.	3.0	148
59	Optical Enhancement in Heteroleptic Ru(II) Polypyridyl Complexes Using Electron-Donor Ancillary Ligands. Journal of Physical Chemistry C, 2014, 118, 8747-8755.	3.1	2
60	First principles study of the permeability of graphene to hydrogen atoms. Physical Chemistry Chemical Physics, 2013, 15, 16132.	2.8	116
61	Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Physical Review B, 2013, 88, .	3.2	64
62	Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach. Scientific Reports, 2013, 3, 2999.	3.3	110
63	Iron(ii) spin crossover films on Au(111): scanning probe microscopy and photoelectron spectroscopy. Chemical Communications, 2013, 49, 10446.	4.1	69
64	The high-throughput highway to computational materials design. Nature Materials, 2013, 12, 191-201.	27.5	1,475
65	Modification of Molecular Spin Crossover in Ultrathin Films. Nano Letters, 2013, 13, 1429-1434.	9.1	83
66	Hydrogen Adsorption on Platinum–Gold Bimetallic Nanoparticles: A Density Functional Theory Study. Journal of Physical Chemistry C, 2013, 117, 15050-15060.	3.1	36
67	Activation of water on the TiO2 (110) surface: The case of Ti adatoms. Journal of Chemical Physics, 2012, 136, 064703.	3.0	12
68	Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions. Applied Physics Letters, 2012, 101, 113111.	3.3	46
69	<i>Ab initio</i> thermal transport properties of nanostructures from density functional perturbation theory. Journal of Physics Condensed Matter, 2012, 24, 492204.	1.8	17
70	Charge transfer equilibria in ambient-exposed epitaxial graphene on (0001Â⁻) 6 H-SiC. Journal of Applied Physics, 2012, 111, 113706.	2.5	35
71	Complex Materials for Molecular Spintronics Applications: Cobalt Bis(dioxolene) Valence Tautomers, from Molecules to Polymers. Journal of Physical Chemistry B, 2012, 116, 13141-13148.	2.6	42
72	AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 2012, 58, 227-235.	3.0	811

#	Article	IF	CITATIONS
73	A search model for topological insulators with high-throughput robustness descriptors. Nature Materials, 2012, 11, 614-619.	27.5	244
74	Electric Field Induced Phase Transitions in Polymers: A Novel Mechanism for High Speed Energy Storage. Physical Review Letters, 2012, 108, 087802.	7.8	43
75	CO Adsorption on Noble Metal Clusters: Local Environment Effects. Journal of Physical Chemistry C, 2011, 115, 5637-5647.	3.1	45
76	Rational computational design of optimal catalytic surfaces. Applied Physics Letters, 2010, 97, 233108.	3.3	2
77	Ti-decorated C60 as catalyst for hydrogen generation and storage. Applied Physics Letters, 2010, 96, .	3.3	18
78	Surface polar phonon dominated electron transport in graphene. Applied Physics Letters, 2010, 97, .	3.3	93
79	Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001). Physical Review Letters, 2010, 104, 146801.	7.8	63
80	Dissociation of water over Ti-decorated C60. Journal of Chemical Physics, 2010, 133, 084510.	3.0	13
81	Thermoelectric properties of graphene nanoribbons, junctions and superlattices. Journal of Physics Condensed Matter, 2010, 22, 372202.	1.8	72
82	Chiral Steering of Molecular Organization in the Limit of Weak Adsorbateâ^'Substrate Interactions: Enantiopure and Racemic Tartaric Acid Domains on Ag(111). Journal of Physical Chemistry C, 2010, 114, 8917-8925.	3.1	14
83	Substrate-Mediated Intermolecular Hybridization in Binary Phthalocyanine Superstructures. Journal of Physical Chemistry C, 2010, 114, 1041-1045.	3.1	14
84	Sequestration and selective oxidation of carbon monoxide on graphene edges. Journal of Physics Condensed Matter, 2009, 21, 355008.	1.8	5
85	Molecular design of photoactive acenes for organic photovoltaics. Journal of Chemical Physics, 2009, 130, 194701.	3.0	19
86	Isomerization kinetics of small hydrocarbons in confinement. Adsorption, 2008, 14, 181-188.	3.0	5
87	Effects of end group functionalization and level alignment on electron transport in molecular devices. Journal of Chemical Physics, 2008, 128, 024708.	3.0	15
88	Catalytic role of carbons in methane decomposition for CO- and CO2-free hydrogen generation. Journal of Chemical Physics, 2008, 128, 214702.	3.0	34
89	A remarkable shape-catalytic effect of confinement on the rotational isomerization of small hydrocarbons. Journal of Chemical Physics, 2008, 128, 034704.	3.0	25
90	Ab initiocorrelation effects on the electronic and transport properties of metal(II)-phthalocyanine-based devices. Nanotechnology, 2007, 18, 424013.	2.6	65

Marco Buongiorno Nardelli

#	Article	IF	CITATIONS
91	Phase Equilibria in High Energy Density PVDF-Based Polymers. Physical Review Letters, 2007, 99, 047801.	7.8	77
92	Confinement effects on chemical reactions—Toward an integrated rational catalyst design. Applied Surface Science, 2007, 253, 5570-5579.	6.1	40
93	Effect of confinement by porous carbons on the unimolecular decomposition of formaldehyde. Journal of Chemical Physics, 2006, 125, 084711.	3.0	17
94	First-principles theory of metal-alkaline earth oxide interfaces. Physical Review B, 2006, 73, .	3.2	26
95	Adsorption and catalysis: The effect of confinement on chemical reactions. Applied Surface Science, 2005, 252, 766-777.	6.1	85
96	Effect of Confinement on Chemical Reactions. Adsorption, 2005, 11, 349-354.	3.0	28
97	First principles theory of artificial metal chains on NiAl(110) surface. Physical Review B, 2005, 72, .	3.2	22
98	Dissociation of Water on Defective Carbon Substrates. Physical Review Letters, 2005, 95, 136105.	7.8	139
99	Carbon Nanotubeâ~'Metal Cluster Composites:Â A New Road to Chemical Sensors?. Nano Letters, 2005, 5, 847-851.	9.1	209
100	First-Principles Theory of Correlated Transport through Nanojunctions. Physical Review Letters, 2005, 94, 116802.	7.8	72
101	Band Structure and Quantum Conductance of Nanostructures from Maximally Localized Wannier Functions: The Case of Functionalized Carbon Nanotubes. Physical Review Letters, 2005, 95, 076804.	7.8	187
102	Ab InitioStudies of Polarization and Piezoelectricity in Vinylidene Fluoride and BN-Based Polymers. Physical Review Letters, 2004, 92, 115504.	7.8	116
103	Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes. Journal of Applied Physics, 2004, 96, 6756-6760.	2.5	25
104	Electronic and Transport Properties of Artificial Gold Chains. Physical Review Letters, 2004, 93, 096404.	7.8	56
105	Ab initiotransport properties of nanostructures from maximally localized Wannier functions. Physical Review B, 2004, 69, .	3.2	247
106	Fullerene Coalescence in Nanopeapods:  A Path to Novel Tubular Carbon. Nano Letters, 2003, 3, 1037-1042.	9.1	185
107	The Interface Phase and the Schottky Barrier for a Crystalline Dielectric on Silicon. Science, 2003, 300, 1726-1730.	12.6	163
108	Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. Handbook of Numerical Analysis, 2003, 10, 571-612.	1.8	10

#	Article	IF	CITATIONS
109	Response to "Comment on â€~Intrinsic electron transport properties of carbon nanotube Y junctions' á [Appl. Phys. Lett. 83, 1674 (2003)]. Applied Physics Letters, 2003, 83, 1676-1677.	à€• 3.3	3
110	Intrinsic electron transport properties of carbon nanotube Y-junctions. Applied Physics Letters, 2002, 81, 5234-5236.	3.3	74
111	Field Emission Properties of BN/C and BN@C Hybrid Nanotubes. Materials Research Society Symposia Proceedings, 2002, 739, 571.	0.1	0
112	Electronic and field emission properties of boron nitride/carbon nanotube superlattices. Applied Physics Letters, 2002, 81, 46-48.	3.3	118
113	Ultimate strength of carbon nanotubes: A theoretical study. Physical Review B, 2002, 65, .	3.2	239
114	O(N)real-space method forab initioquantum transport calculations: Application to carbon nanotube–metal contacts. Physical Review B, 2001, 64, .	3.2	115
115	Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon, 2000, 38, 1703-1711.	10.3	162
116	Dynamic Conductance of Carbon Nanotubes. Physical Review Letters, 2000, 84, 2921-2924.	7.8	67
117	Theoretical STM signatures and transport properties of native defects in carbon nanotubes. Physical Review B, 2000, 61, 14194-14203.	3.2	96
118	Tunable Resistance of a Carbon Nanotube-Graphite Interface. , 2000, 290, 1742-1744.		102
119	Ad-dimers on Strained Carbon Nanotubes: A New Route for Quantum Dot Formation?. Physical Review Letters, 1999, 83, 4132-4135.	7.8	104
120	Mechanical deformations and coherent transport in carbon nanotubes. Physical Review B, 1999, 60, R16338-R16341.	3.2	137
121	Electronic transport in extended systems: Application to carbon nanotubes. Physical Review B, 1999, 60, 7828-7833.	3.2	450
122	Theoretical bounds for multiwalled carbon nanotube growth. Chemical Physics Letters, 1998, 296, 471-476.	2.6	14
123	Brittle and Ductile Behavior in Carbon Nanotubes. Physical Review Letters, 1998, 81, 4656-4659.	7.8	475
124	Mechanism of strain release in carbon nanotubes. Physical Review B, 1998, 57, R4277-R4280.	3.2	441
125	Lip-Lip Interactions and the Growth of Multiwalled Carbon Nanotubes. Physical Review Letters, 1998, 80, 313-316.	7.8	91
126	Theory of interfaces and surfaces in wide-gap nitrides. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1144.	1.6	9

Marco Buongiorno Nardelli

#	Article	IF	CITATIONS
127	Strain effects on the interface properties of nitride semiconductors. Physical Review B, 1997, 55, R7323-R7326.	3.2	101
128	Theory of surface morphology of wurtzite GaN (0001) surfaces. Physical Review B, 1997, 56, R12725-R12728.	3.2	100
129	Theory of Interfaces and Surfaces of Wide-Gap Nitrides. Materials Research Society Symposia Proceedings, 1997, 482, 904.	0.1	2
130	Polarization field effects on the electron-hole recombination dynamics in In0.2Ga0.8N/In1â^'xGaxN multiple quantum wells. Applied Physics Letters, 1997, 71, 3135-3137.	3.3	125
131	Real-space multigrid methods for large-scale electronic structure problems. International Journal of Quantum Chemistry, 1997, 65, 531-543.	2.0	22
132	A density-functional study of van der Waals forces: He interaction with a semiconductor surface. Solid State Communications, 1996, 97, 215-219.	1.9	12
133	Ordering of a prototypical conjugated molecular system during monolayer growth on the (1×2)-Au(110) surface. Physical Review B, 1996, 53, 1095-1098.	3.2	26
134	High-pressure low-symmetry phases of cesium halides. Physical Review B, 1995, 51, 8060-8068.	3.2	23
135	Phonon softening and high-pressure low-symmetry phases of cesium iodide. Physical Review Letters, 1992, 69, 1069-1072.	7.8	27
136	Chemisorption of H on GaAs(110): a First-Principles Calculation. Europhysics Letters, 1990, 13, 653-658.	2.0	26