Steve Scheiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7560470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promotion of TH3 (T = Si and Ge) group transfer within a tetrel bond by a cation–π interaction. Physical Chemistry Chemical Physics, 2022, 24, 1113-1119.	2.8	3
2	Influence of Substituents in the Benzene Ring on the Halogen Bond of Iodobenzene with Ammonia. ChemPhysChem, 2022, 23, .	2.1	19
3	Principles Guiding the Square Bonding Motif Containing a Pair of Chalcogen Bonds between Chalcogenadiazoles. Journal of Physical Chemistry A, 2022, 126, 1194-1203.	2.5	13
4	Search for an exothermic halogen bond between anions. Physical Chemistry Chemical Physics, 2022, 24, 6964-6972.	2.8	3
5	Characterization of Type I and II Interactions between Halogen Atoms. Crystal Growth and Design, 2022, 22, 2692-2702.	3.0	16
6	The Role of Hydrogen Bonds in Interactions between [PdCl4]2â^' Dianions in Crystal. Molecules, 2022, 27, 2144.	3.8	4
7	Competition between Intra and Intermolecular Pnicogen Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Bases. ChemPhysChem, 2022, , .	2.1	4
8	Resonance-assisted intramolecular triel bonds. Physical Chemistry Chemical Physics, 2022, 24, 15015-15024.	2.8	6
9	Experimental and Theoretical Evidence of a Pbâ‹â‹âvPb Ditetrel Bond Without a σâ€Hole. ChemPhysChem, 23, .	20 <u>22</u> , 2.1	4
10	Various Sorts of Chalcogen Bonds Formed by an Aromatic System. Journal of Physical Chemistry A, 2022, 126, 4025-4035.	2.5	9
11	Carbon as an electron donor atom. Polyhedron, 2021, 193, 114905.	2.2	8
12	Unusual substituent effects in the Tr···Te triel bond. International Journal of Quantum Chemistry, 2021, 121, e26526.	2.0	6
13	Comparison of Bifurcated Halogen with Hydrogen Bonds. Molecules, 2021, 26, 350.	3.8	12
14	Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. Journal of Physical Chemistry A, 2021, 125, 657-668.	2.5	14
15	Origins and properties of the tetrel bond. Physical Chemistry Chemical Physics, 2021, 23, 5702-5717.	2.8	88
16	Weak Ïfâ€Hole Triel Bond between C 5 H 5 Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. ChemPhysChem, 2021, 22, 481-487.	2.1	15
17	Molecular Recognition. ChemPhysChem, 2021, 22, 433-434.	2.1	4
18	Relative Strengths of a Pnicogen and a Tetrel Bond and Their Mutual Effects upon One Another. Journal of Physical Chemistry A, 2021, 125, 2631-2641.	2.5	13

#	Article	IF	CITATIONS
19	Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules, 2021, 26, 1740.	3.8	32
20	Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. ChemPhysChem, 2021, 22, 924-934.	2.1	7
21	Crystallographic and Theoretical Evidences of Anionâ‹â‹â‹Anion Interaction. ChemPhysChem, 2021, 22, 818-821.	2.1	25
22	Anion–Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules, 2021, 26, 2116.	3.8	13
23	Fabricating Flexible Packaging Batteries in General Chemistry Laboratories. Journal of Chemical Education, 2021, 98, 2471-2475.	2.3	2
24	Proximity Effects of Substituents on Halogen Bond Strength. Journal of Physical Chemistry A, 2021, 125, 5069-5077.	2.5	17
25	Diboron Bonds Between BX 3 (X=H, F, CH 3) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). ChemPhysChem, 2021, 22, 1461-1469.	2.1	4
26	Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 7613-7627.	2.6	9
27	Dissection of the Origin of π-Holes and the Noncovalent Bonds in Which They Engage. Journal of Physical Chemistry A, 2021, 125, 6514-6528.	2.5	21
28	Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. ChemPhysChem, 2021, 22, 2305-2312.	2.1	6
29	Partial transfer of bridging atom in halogen-bonded complexes. Computational and Theoretical Chemistry, 2021, 1204, 113398.	2.5	2
30	Anion–anion and anion–neutral triel bonds. Physical Chemistry Chemical Physics, 2021, 23, 4818-4828.	2.8	19
31	Participation of S and Se in hydrogen and chalcogen bonds. CrystEngComm, 2021, 23, 6821-6837.	2.6	29
32	Noncovalent bond between tetrel π-hole and hydride. Physical Chemistry Chemical Physics, 2021, 23, 10536-10544.	2.8	2
33	Anionâ‹̄anion (MX ₃ ^{â^'}) ₂ dimers (M = Zn, Cd, Hg; X = Cl, Br, I) in different environments. Physical Chemistry Chemical Physics, 2021, 23, 13853-13861.	2.8	16
34	Competition between a Tetrel and Halogen Bond to a Common Lewis Acid. Journal of Physical Chemistry A, 2021, 125, 308-316.	2.5	14
35	Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments. Molecules, 2021, 26, 6394.	3.8	9
36	Anatomy of π-hole bonds: Linear systems. Journal of Chemical Physics, 2021, 155, 174302.	3.0	5

#	Article	IF	CITATIONS
37	Triel bonds within anion ··· anion complexes. Physical Chemistry Chemical Physics, 2021, 23, 25097-25106.	2.8	6
38	On the Ability of Nitrogen to Serve as an Electron Acceptor in a Pnicogen Bond. Journal of Physical Chemistry A, 2021, 125, 10419-10427.	2.5	14
39	Maximal occupation by bases of ï€â€hole bands surrounding linear molecules. Journal of Computational Chemistry, 2021, , .	3.3	2
40	Experimental and theoretical evidence of attractive interactions between dianions: [PdCl ₄] ^{2â^'} â< ⁻ [PdCl ₄] ^{2â^'} . Chemical Communications, 2021, 57, 13305-13308.	4.1	7
41	Structures and energetics of clusters surrounding diatomic anions stabilized by hydrogen, halogen, and other noncovalent bonds. Chemical Physics, 2020, 530, 110590.	1.9	15
42	The Hydrogen Bond: A Hundred Years and Counting. Journal of the Indian Institute of Science, 2020, 100, 61-76.	1.9	34
43	Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. ChemPhysChem, 2020, 21, 212-219.	2.1	28
44	Coordination of anions by noncovalently bonded I_{f} -hole ligands. Coordination Chemistry Reviews, 2020, 405, 213136.	18.8	66
45	Versatility of the Cyano Group in Intermolecular Interactions. Molecules, 2020, 25, 4495.	3.8	8
46	Understanding noncovalent bonds and their controlling forces. Journal of Chemical Physics, 2020, 153, 140901.	3.0	46
47	The balance between sideâ€chain and backboneâ€driven association in folding of the αâ€helical influenza A transmembrane peptide. Journal of Computational Chemistry, 2020, 41, 2177-2188.	3.3	3
48	Noncovalent Bonds between Tetrel Atoms. ChemPhysChem, 2020, 21, 1934-1944.	2.1	24
49	F-Halogen Bond: Conditions for Its Existence. Journal of Physical Chemistry A, 2020, 124, 7290-7299.	2.5	17
50	Relationships between Bond Strength and Spectroscopic Quantities in H-Bonds and Related Halogen, Chalcogen, and Pnicogen Bonds. Journal of Physical Chemistry A, 2020, 124, 7716-7725.	2.5	16
51	Effect of carbon hybridization in C—F bond as an electron donor in triel bonds. Journal of Chemical Physics, 2020, 153, 074304.	3.0	6
52	Pnicogen Bonds Pairing Anionic Lewis Acid with Neutral and Anionic Bases. Journal of Physical Chemistry A, 2020, 124, 4998-5006.	2.5	24
53	Complexes of HArF and AuX (X = F, Cl, Br, I). Comparison of Hâ€bonds, halogen bonds, Fâ€shared bonds and covalent bonds. Applied Organometallic Chemistry, 2020, 34, e5891.	3.5	6
54	Coordination of a Central Atom by Multiple Intramolecular Pnicogen Bonds. Inorganic Chemistry, 2020, 59, 9315-9324.	4.0	19

#	Article	IF	CITATIONS
55	The ditetrel bond: noncovalent bond between neutral tetrel atoms. Physical Chemistry Chemical Physics, 2020, 22, 16606-16614.	2.8	29
56	How Many Pnicogen Bonds can be Formed to a Central Atom Simultaneously?. Journal of Physical Chemistry A, 2020, 124, 2046-2056.	2.5	29
57	Xeâ< chalcogen aerogen bond. Effect of substituents and size of chalcogen atom. Physical Chemistry Chemical Physics, 2020, 22, 4115-4121.	2.8	11
58	Competition between Intra and Intermolecular Triel Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Lewis Bases. Molecules, 2020, 25, 635.	3.8	20
59	On the Stability of Interactions between Pairs of Anions – Complexes of MCl ₃ ^{â^'} (M=Be, Mg, Ca, Sr, Ba) with Pyridine and CN ^{â^'} . ChemPhysChem, 2020, 21, 870-877.	2.1	25
60	Anionâ‹â‹â‹Anion Attraction in Complexes of MCl ₃ ^{â^'} (M=Zn, Cd, Hg) with CN ^{âr'} . ChemPhysChem, 2020, 21, 1119-1125.	2.1	31
61	Effects of Halogen, Chalcogen, Pnicogen, and Tetrel Bonds on IR and NMR Spectra. Molecules, 2019, 24, 2822.	3.8	41
62	Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pairâ^ïi€ Interactions Tuned by Substituents. Journal of Physical Chemistry A, 2019, 123, 7288-7295.	2.5	11
63	The ability of a tetrel bond to transition a neutral amino acid into a zwitterion. Chemical Physics Letters, 2019, 731, 136584.	2.6	9
64	Comparison of halogen with proton transfer. Symmetric and asymmetric systems. Chemical Physics Letters, 2019, 731, 136593.	2.6	4
65	Theoretical Studies of IR and NMR Spectral Changes Induced by Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, and Tetrel Bonds in a Model Protein Environment. Molecules, 2019, 24, 3329.	3.8	35
66	Chalcogen bonding of two ligands to hypervalent YF ₄ (Y = S, Se, Te, Po). Physical Chemistry Chemical Physics, 2019, 21, 20829-20839.	2.8	27
67	Dual Geometry Schemes in Tetrel Bonds: Complexes between TF4 (T = Si, Ge, Sn) and Pyridine Derivatives. Molecules, 2019, 24, 376.	3.8	28
68	Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. Journal of the American Chemical Society, 2019, 141, 2604-2613.	13.7	28
69	On the ability of pnicogen atoms to engage in both σ and π-hole complexes. Heterodimers of ZF2C6H5 (Z = P, As, Sb, Bi) and NH3. Journal of Molecular Modeling, 2019, 25, 152.	1.8	29
70	Computational Insights into Mg l Complex Electrolytes for Rechargeable Magnesium Batteries. Batteries and Supercaps, 2019, 2, 792-800.	4.7	16
71	Comparison between Hydrogen and Halogen Bonds in Complexes of 6â€OXâ€Fulvene with Pnicogen and Chalcogen Electron Donors. ChemPhysChem, 2019, 20, 1978-1984.	2.1	16
72	Forty years of progress in the study of the hydrogen bond. Structural Chemistry, 2019, 30, 1119-1128.	2.0	39

#	Article	IF	CITATIONS
73	Interactions of (MY)6 (M = Zn, Cd; Y = O, S, Se) quantum dots with N-bases. Structural Chemistry, 2019, 30, 1003-1014.	2.0	2
74	Structures of clusters surrounding ions stabilized by hydrogen, halogen, chalcogen, and pnicogen bonds. Chemical Physics, 2019, 524, 55-62.	1.9	13
75	Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds. Physical Chemistry Chemical Physics, 2019, 21, 10336-10346.	2.8	20
76	On the capability of metal–halogen groups to participate in halogen bonds. CrystEngComm, 2019, 21, 2875-2883.	2.6	18
77	Optical Stability of 1,1′-Binaphthyl Derivatives. ACS Omega, 2019, 4, 6044-6049.	3.5	11
78	Differential Binding of Tetrel-Bonding Bipodal Receptors to Monatomic and Polyatomic Anions. Molecules, 2019, 24, 227.	3.8	21
79	Structural and Functional Characterization of Sulfonium Carbon–Oxygen Hydrogen Bonding in the Deoxyamino Sugar Methyltransferase TylM1. Biochemistry, 2019, 58, 2152-2159.	2.5	0
80	Hexacoordinated Tetrelâ€Bonded Complexes between TF ₄ (T=Si, Ge, Sn, Pb) and NCH: Competition between σ―and Ï€â€Holes. ChemPhysChem, 2019, 20, 959-966.	2.1	25
81	Comparison of Ïfâ€hole and Ï€â€hole tetrel bonds in complexes of borazine with TH ₃ F and F ₂ TO/H ₂ TO (T = C, Si, Ge). International Journal of Quantum Chemistry, 2019 119, e25910.	, 2.0	19
82	Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure and Applied Chemistry, 2019, 91, 1889-1892.	1.9	322
83	Carbene triel bonds between TrR 3 (Tr = B, Al) and Nâ€heterocyclic carbenes. International Journal of Quantum Chemistry, 2019, 119, e25867.	2.0	27
84	Dependence of NMR chemical shifts upon CH bond lengths of a methyl group involved in a tetrel bond. Chemical Physics Letters, 2019, 714, 61-64.	2.6	16
85	Implications of monomer deformation for tetrel and pnicogen bonds. Physical Chemistry Chemical Physics, 2018, 20, 8832-8841.	2.8	67
86	Steric Crowding in Tetrel Bonds. Journal of Physical Chemistry A, 2018, 122, 2550-2562.	2.5	55
87	Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. Chemistry - A European Journal, 2018, 24, 8167-8177.	3.3	68
88	Effect of Magnesium Bond on the Competition Between Hydrogen and Halogen Bonds and the Induction of Proton and Halogen Transfer. ChemPhysChem, 2018, 19, 1456-1464.	2.1	11
89	Aerogen bonds formed between AeOF ₂ (Ae = Kr, Xe) and diazines: comparisons between If-hole and I€-hole complexes. Physical Chemistry Chemical Physics, 2018, 20, 4676-4687.	2.8	36
90	Comparison of Various Means of Evaluating Molecular Electrostatic Potentials for Noncovalent Interactions. Journal of Computational Chemistry, 2018, 39, 500-510.	3.3	27

#	Article	IF	CITATIONS
91	The Ï€â€Tetrel Bond and its Influence on Hydrogen Bonding and Proton Transfer. ChemPhysChem, 2018, 19, 736-743.	2.1	46
92	Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases. Molecules, 2018, 23, 2965.	3.8	29
93	Ability of IR and NMR Spectral Data to Distinguish between a Tetrel Bond and a Hydrogen Bond. Journal of Physical Chemistry A, 2018, 122, 7852-7862.	2.5	31
94	Trielâ€Bonded Complexes between TrR ₃ (Tr=B, Al, Ga; R=H, F, Cl, Br, CH ₃) and Pyrazine. ChemPhysChem, 2018, 19, 3122-3133.	2.1	25
95	Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding. Molecules, 2018, 23, 1147.	3.8	39
96	Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors. Molecules, 2018, 23, 1681.	3.8	69
97	Comparison between Tetrel Bonded Complexes Stabilized by if and $i∈$ Hole Interactions. Molecules, 2018, 23, 1416.	3.8	45
98	Water-Mediated Carbon–Oxygen Hydrogen Bonding Facilitates <i>S</i> -Adenosylmethionine Recognition in the Reactivation Domain of Cobalamin-Dependent Methionine Synthase. Biochemistry, 2018, 57, 3733-3740.	2.5	16
99	Regium bonds between M _n clusters (M = Cu, Ag, Au and <i>n</i> = 2–6) and nucleophiles NH ₃ and HCN. Physical Chemistry Chemical Physics, 2018, 20, 22498-22509.	2.8	46
100	Comparison of tetrel bonds in neutral and protonated complexes of pyridineTF ₃ and furanTF ₃ (T = C, Si, and Ge) with NH ₃ . Physical Chemistry Chemical Physics, 2017, 19, 5550-5559.	2.8	98
101	Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, and Tetrel Bonds. Journal of Physical Chemistry A, 2017, 121, 3606-3615.	2.5	56
102	Comparison of halide receptors based on H, halogen, chalcogen, pnicogen, and tetrel bonds. Faraday Discussions, 2017, 203, 213-226.	3.2	57
103	The halogen bond in solution: general discussion. Faraday Discussions, 2017, 203, 347-370.	3.2	5
104	Computational approaches and sigma-hole interactions: general discussion. Faraday Discussions, 2017, 203, 131-163.	3.2	17
105	Can HCCH/HBNH Break Bâ•N/Câ•€ Bonds of Single-Wall BN/Carbon Nanotubes at Their Surface?. Journal of Physical Chemistry C, 2017, 121, 26044-26053.	3.1	0
106	Systematic Elucidation of Factors That Influence the Strength of Tetrel Bonds. Journal of Physical Chemistry A, 2017, 121, 5561-5568.	2.5	108
107	Monitoring the Charge Distribution during Proton and Sodium Ion Conduction along Chains of Water Molecules and Protein Residues. Israel Journal of Chemistry, 2017, 57, 385-392.	2.3	2
108	Halogen Bonds Formed between Substituted Imidazoliums and N Bases of Varying N-Hybridization. Molecules, 2017, 22, 1634.	3.8	18

#	Article	IF	CITATIONS
109	Assessment of the Presence and Strength of H-Bonds by Means of Corrected NMR. Molecules, 2016, 21, 1426.	3.8	30
110	Hâ€bonding and stacking interactions between chloroquine and temozolomide. International Journal of Quantum Chemistry, 2016, 116, 1196-1204.	2.0	7
111	Segmentation and additive approach: A reliable technique to study noncovalent interactions of large molecules at the surface of singleâ€wall carbon nanotubes. Journal of Computational Chemistry, 2016, 37, 1953-1961.	3.3	0
112	Enhancing the Reduction Potential of Quinones via Complex Formation. Journal of Organic Chemistry, 2016, 81, 4316-4324.	3.2	9
113	Torsional and Electronic Factors Control the Câ^'Hâ‹â‹O Interaction. Chemistry - A European Journal, 2016, 22, 16513-16521.	3.3	18
114	Highly Selective Halide Receptors Based on Chalcogen, Pnicogen, and Tetrel Bonds. Chemistry - A European Journal, 2016, 22, 18850-18858.	3.3	98
115	Interactions of Nucleic Acid Bases with Temozolomide. Stacked, Perpendicular, and Coplanar Heterodimers. Journal of Physical Chemistry B, 2016, 120, 9347-9361.	2.6	10
116	Effects of Angular Deformation on the Energetics of the S _N 2 Reaction. European Journal of Organic Chemistry, 2016, 2016, 3964-3968.	2.4	1
117	Interactions between temozolomide and quercetin. Structural Chemistry, 2016, 27, 1577-1588.	2.0	7
118	Interpretation of Spectroscopic Markers of Hydrogen Bonds. ChemPhysChem, 2016, 17, 2263-2271.	2.1	17
119	NXâ‹ Y halogen bonds. Comparison with NHâ‹ Y H-bonds and CXâ‹ Y halogen bonds. Physical Chemistry Chemical Physics, 2016, 18, 18015-18023.	2.8	17
120	Building a Better Halide Receptor: Optimum Choice of Spacer, Binding Unit, and Halosubstitution. ChemPhysChem, 2016, 17, 836-844.	2.1	15
121	Hydrogen bonded and stacked geometries of the temozolomide dimer. Journal of Molecular Modeling, 2016, 22, 77.	1.8	13
122	Catalysis of the Aza-Diels–Alder Reaction by Hydrogen and Halogen Bonds. Journal of Organic Chemistry, 2016, 81, 2589-2597.	3.2	38
123	Sulfur–Oxygen Chalcogen Bonding Mediates AdoMet Recognition in the Lysine Methyltransferase SET7/9. ACS Chemical Biology, 2016, 11, 748-754.	3.4	93
124	Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH ₃ . Physical Chemistry Chemical Physics, 2016, 18, 3581-3590.	2.8	99
125	Regioselectivity of the interaction of temozolomide with borane and boron trifluoride. Structural Chemistry, 2015, 26, 1359-1365.	2.0	9
126	Competitive Halide Binding by Halogen Versus Hydrogen Bonding: Bisâ€ŧriazole Pyridinium. Chemistry - A European Journal, 2015, 21, 13330-13335.	3.3	33

#	Article	IF	CITATIONS
127	Dissection of the Factors Affecting Formation of a CHâ^™â^™â^™O H-Bond. A Case Study. Crystals, 2015, 5, 327-	-3 4.5 .	15
128	S···Ĩ€ Chalcogen Bonds between SF ₂ or SF ₄ and C–C Multiple Bonds. Journal of Physical Chemistry A, 2015, 119, 5889-5897.	2.5	40
129	Substituent Effects on the Binding of Halides by Neutral and Dicationic Bis(triazolium) Receptors. Journal of Physical Chemistry A, 2015, 119, 13064-13073.	2.5	35
130	Bâ•N Bond Cleavage and BN Ring Expansion at the Surface of Boron Nitride Nanotubes by Iminoborane. Journal of Physical Chemistry C, 2015, 119, 3253-3259.	3.1	15
131	Intramolecular S···O Chalcogen Bond as Stabilizing Factor in Geometry of Substituted Phenyl-SF3 Molecules. Journal of Organic Chemistry, 2015, 80, 2356-2363.	3.2	61
132	Anionic CHâ‹â‹â‹X ^{â^'} Hydrogen Bonds: Origin of Their Strength, Geometry, and Other Propertie Chemistry - A European Journal, 2015, 21, 1474-1481.	^{2S} 3.3	26
133	Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid–base interactions. Physical Chemistry Chemical Physics, 2015, 17, 3850-3866.	2.8	20
134	Chalcogen Bonds in Complexes of SOXY (X, Y = F, Cl) with Nitrogen Bases. Journal of Physical Chemistry A, 2015, 119, 535-541.	2.5	58
135	Frontispiece: Anionic CHâ‹â‹â‹Xâ`Hydrogen Bonds: Origin of Their Strength, Geometry, and Other Propertie Chemistry - A European Journal, 2015, 21, n/a-n/a.	^{S.} 3.3	0
136	Comparison of CH···O, SH···O, Chalcogen, and Tetrel Bonds Formed by Neutral and Cationic Sulfur-Containing Compounds. Journal of Physical Chemistry A, 2015, 119, 9189-9199.	2.5	92
137	Structure and Properties of [8]BN-Circulenes: Inorganic Analogues of [8]Circulenes. Journal of Physical Chemistry C, 2015, 119, 15541-15546.	3.1	11
138	Long-range behavior of noncovalent bonds. Neutral and charged H-bonds, pnicogen, chalcogen, and halogen bonds. Chemical Physics, 2015, 456, 34-40.	1.9	21
139	Interactions between Thiourea and Imines. Prelude to Catalysis. Journal of Organic Chemistry, 2015, 80, 10334-10341.	3.2	6
140	Tetrel, chalcogen, and CHâ‹â‹O hydrogen bonds in complexes pairing carbonyl-containing molecules with 1, 2, and 3 molecules of CO2. Journal of Chemical Physics, 2015, 142, 034307.	3.0	81
141	Microsolvation of anions by molecules forming CH··Xâ^' hydrogen bonds. Chemical Physics, 2015, 463, 137-144.	1.9	6
142	The interplay between charge transfer, rehybridization, and atomic charges in the internal geometry of subunits in noncovalent interactions. International Journal of Quantum Chemistry, 2015, 115, 28-33.	2.0	16
143	Noncovalent interactions in dimers and trimers of SO3 and CO. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	60
144	Complexation ofnSO2molecules (n= 1, 2, 3) with formaldehyde and thioformaldehyde. Journal of Chemical Physics, 2014, 140, 034302.	3.0	40

#	Article	IF	CITATIONS
145	An exploration of the ozone dimer potential energy surface. Journal of Chemical Physics, 2014, 140, 244311.	3.0	8
146	Strongly bound noncovalent (SO3)n:H2CO complexes (n = 1, 2). Physical Chemistry Chemical Physics, 2014, 16, 18974-18981.	2.8	43
147	Chalcogen Bonding between Tetravalent SF ₄ and Amines. Journal of Physical Chemistry A, 2014, 118, 10849-10856.	2.5	97
148	Effects of Charge and Substituent on the S··ÀN Chalcogen Bond. Journal of Physical Chemistry A, 2014, 118, 3183-3192.	2.5	144
149	Substituent Effects in the Noncovalent Bonding of SO ₂ to Molecules Containing a Carbonyl Group. The Dominating Role of the Chalcogen Bond. Journal of Physical Chemistry A, 2014, 118, 3835-3845.	2.5	51
150	Manipulating Unconventional CH-Based Hydrogen Bonding in a Methyltransferase via Noncanonical Amino Acid Mutagenesis. ACS Chemical Biology, 2014, 9, 1692-1697.	3.4	23
151	Complexes containing CO ₂ and SO ₂ . Mixed dimers, trimers and tetramers. Physical Chemistry Chemical Physics, 2014, 16, 5142-5149.	2.8	35
152	Magnitude and Mechanism of Charge Enhancement of CH··O Hydrogen Bonds. Journal of Physical Chemistry A, 2013, 117, 10551-10562.	2.5	57
153	Conservation and Functional Importance of Carbon–Oxygen Hydrogen Bonding in AdoMet-Dependent Methyltransferases. Journal of the American Chemical Society, 2013, 135, 15536-15548.	13.7	92
154	Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm, 2013, 15, 3119-3124.	2.6	109
155	The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Accounts of Chemical Research, 2013, 46, 280-288.	15.6	524
156	Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. International Journal of Quantum Chemistry, 2013, 113, 1609-1620.	2.0	256
157	Can a C–H···O Interaction Be a Determinant of Conformation?. Journal of the American Chemical Society, 2012, 134, 12064-12071.	13.7	110
158	Extrapolation to the complete basis set limit for binding energies of noncovalent interactions. Computational and Theoretical Chemistry, 2012, 998, 9-13.	2.5	32
159	Evaluation of DFT methods to study reactions of benzene with OH radical. International Journal of Quantum Chemistry, 2012, 112, 1879-1886.	2.0	13
160	Substituent Effects on Cl···N, S···N, and P··ÀN Noncovalent Bonds. Journal of Physical Chemistry A, 202 116, 3487-3497.	2, _{2.5}	127
161	Contributions of Various Noncovalent Bonds to the Interaction between an Amide and Sâ€Containing Molecules. ChemPhysChem, 2012, 13, 3535-3541.	2.1	14
162	Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chemical Physics Letters, 2012, 532, 31-35.	2.6	181

#	Article	IF	CITATIONS
163	Effects of carbon chain substituents on the Pâ<⁻N noncovalent bond. Chemical Physics Letters, 2012, 536, 30-33.	2.6	69
164	Effects of Substituents upon the P···N Noncovalent Interaction: The Limits of Its Strength. Journal of Physical Chemistry A, 2011, 115, 11202-11209.	2.5	172
165	Abilities of Different Electron Donors (D) to Engage in a P···D Noncovalent Interaction. Journal of Physical Chemistry A, 2011, 115, 11101-11110.	2.5	103
166	On the properties of Xâ‹â‹â‹N noncovalent interactions for first-, second-, and third-row X atoms. Journal of Chemical Physics, 2011, 134, 164313.	3.0	100
167	SH···N and SH··P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines a phosphines. Journal of Chemical Physics, 2011, 134, 024312.	nd 3.0	126
168	Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 1637-1641.	1.9	1,449
169	Defining the hydrogen bond: An account (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1619-1636.	1.9	856
170	Can two trivalent N atoms engage in a direct N⋯N noncovalent interaction?. Chemical Physics Letters, 2011, 514, 32-35.	2.6	105
171	The Sâ< N noncovalent interaction: Comparison with hydrogen and halogen bonds. Chemical Physics Letters, 2011, 514, 36-39.	2.6	37
172	Effects of multiple substitution upon the P⋯N noncovalent interaction. Chemical Physics, 2011, 387, 79-84.	1.9	92
173	Weak H-bonds. Comparisons of CH⋯O to NH⋯O in proteins and PH⋯N to direct P⋯N interactions. Physical Chemistry Chemical Physics, 2011, 13, 13860.	2.8	163
174	Unconventional Hâ€bonds: SH···N interaction. International Journal of Quantum Chemistry, 2011, 111, 3196-3200.	2.0	17
175	A new noncovalent force: Comparison of P···N interaction with hydrogen and halogen bonds. Journal of Chemical Physics, 2011, 134, 094315.	3.0	205
176	Comparison of Pâ<⁻D (D = P,N) with other noncovalent bonds in molecular aggregates. Journal of Chemical Physics, 2011, 135, 184306.	3.0	85
177	Effect of CH···O hydrogen bond length on the geometric and spectroscopic features of the peptide unit of proteins. International Journal of Quantum Chemistry, 2010, 110, 2775-2783.	2.0	17
178	Analysis of the Reactivities of Protein Câ^'H Bonds to H Atom Abstraction by OH Radical. Journal of the American Chemical Society, 2010, 132, 16450-16459.	13.7	38
179	Quantum chemical analysis of the energetics of the anti and gauche conformers of ethanol. Structural Chemistry, 2009, 20, 43-48.	2.0	24
180	The heat capacities and standard entropies of corresponding potassium and ammonium ion species: is there a constant difference?. Structural Chemistry, 2009, 20, 31-35.	2.0	8

#	Article	IF	CITATIONS
181	Identification of Spectroscopic Patterns of CH··À·O H-Bonds in Proteins. Journal of Physical Chemistry B, 2009, 113, 10421-10427.	2.6	38
182	Ingredients Necessary for Proton Transfer in Enzymes. Israel Journal of Chemistry, 2009, 49, 139-147.	2.3	1
183	Nature of interactions in open-shell complexes pairing H ₂ X with HXX, X=S,O. Molecular Physics, 2009, 107, 713-719.	1.7	14
184	Spectroscopic and Structural Signature of the CHâ^'O Hydrogen Bond. Journal of Physical Chemistry A, 2008, 112, 11854-11860.	2.5	59
185	Noncovalent Ï€â^'Ï€ Stacking and CHÏ€ Interactions of Aromatics on the Surface of Single-Wall Carbon Nanotubes: An MP2 Study. Journal of Physical Chemistry C, 2008, 112, 20070-20075.	3.1	87
186	Analysis of Catalytic Mechanism of Serine Proteases. Viability of the Ring-Flip Hypothesis. Journal of Physical Chemistry B, 2008, 112, 6837-6846.	2.6	16
187	STRUCTURE AND PROPERTIES OF PERFLUOROALKYLATED PHTHALOCYANINES: A THEORETICAL STUDY. Journal of Theoretical and Computational Chemistry, 2008, 07, 541-563.	1.8	9
188	The Strength with Which a Peptide Group Can Form a Hydrogen Bond Varies with the Internal Conformation of the Polypeptide Chain. Journal of Physical Chemistry B, 2007, 111, 11312-11317.	2.6	27
189	Contributions of NH···O and CH···O Hydrogen Bonds to the Stability of β-Sheets in Proteins. Journal of Physical Chemistry B, 2006, 110, 18670-18679.	2.6	112
190	Cooperativity of conventional and unconventional hydrogen bonds involving imidazole. International Journal of Quantum Chemistry, 2006, 106, 843-851.	2.0	39
191	Relative Strengths of NH··O and CH··O Hydrogen Bonds between Polypeptide Chain Segments. Journal of Physical Chemistry B, 2005, 109, 16132-16141.	2.6	92
192	Effect of Solvent upon CH···O Hydrogen Bonds with Implications for Protein Folding. Journal of Physical Chemistry B, 2005, 109, 3681-3689.	2.6	92
193	Theoretical Investigation of the Dihydrogen Bond Linking MH2 with HCCRgF (M = Zn, Cd; Rg = Ar, Kr). Journal of Physical Chemistry A, 2005, 109, 11933-11935.	2.5	32
194	Effects of Peripheral Substituents on the Electronic Structure and Properties of Unligated and Ligated Metal Phthalocyanines, Metal = Fe, Co, Zn. Journal of Chemical Theory and Computation, 2005, 1, 1201-1210.	5.3	46
195	Actinyls in Expanded Porphyrin: A Relativistic Density-Functional Studyâ€. Journal of Physical Chemistry A, 2004, 108, 3056-3063.	2.5	23
196	Comparison of Cooperativity in CH···O and OH···O Hydrogen Bonds. Journal of Physical Chemistry A, 2004, 108, 9161-9168.	2.5	183
197	Substitution Patterns in Mono-BN-Fullerenes:Â Cn(n= 20, 24, 28, 32, 36, and 40). Journal of Physical Chemistry A, 2004, 108, 7681-7685.	2.5	27
198	Performance assessment of density-functional methods for study of charge-transfer complexes. Journal of Computational Chemistry, 2003, 24, 623-631.	3.3	79

#	Article	IF	CITATIONS
199	DFT Calculations and Spectral Measurements of Charge-Transfer Complexes Formed by Aromatic Amines and Nitrogen Heterocycles with Tetracyanoethylene and Chloranil. Journal of Physical Chemistry A, 2003, 107, 8939-8948.	2.5	66
200	Comparison of BN and AlN Substitution on the Structure and Electronic and Chemical Properties of C60 Fullerene. Journal of Physical Chemistry A, 2003, 107, 4056-4065.	2.5	19
201	Rules for BN-Substitution in BCNâ^'Fullerenes. Separation of BN and C Domains. Journal of Physical Chemistry A, 2003, 107, 8630-8637.	2.5	35
202	A DFT/TDDFT study of Group 4A metal porphyrins. Molecular Physics, 2003, 101, 1227-1238.	1.7	9
203	Comparison between hydrogen and dihydrogen bonds among H3BNH3, H2BNH2, and NH3. Journal of Chemical Physics, 2003, 119, 1473-1482.	3.0	95
204	Electronic structure and bonding in unligated and ligated FeII porphyrins. Journal of Chemical Physics, 2002, 116, 3635-3645.	3.0	88
205	Substituent Effects upon Protonation-Induced Red Shift of Phenylâ "Pyridine Copolymers. Journal of Physical Chemistry B, 2002, 106, 534-539.	2.6	12
206	Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn. Journal of Chemical Physics, 2002, 117, 205-219.	3.0	384
207	Red- versus Blue-Shifting Hydrogen Bonds:Â Are There Fundamental Distinctions?. Journal of Physical Chemistry A, 2002, 106, 1784-1789.	2.5	331
208	Comparison of Various Types of Hydrogen Bonds Involving Aromatic Amino Acids. Journal of the American Chemical Society, 2002, 124, 13257-13264.	13.7	328
209	Boronâ^'Nitrogen (BN) Substitution of Fullerenes:Â C60to C12B24N24CBN Ball. Journal of Physical Chemistry A, 2002, 106, 2970-2978.	2.5	86
210	Electronic structure and bonding in metal phthalocyanines, Metal=Fe, Co, Ni, Cu, Zn, Mg. Journal of Chemical Physics, 2001, 114, 9780-9791.	3.0	553
211	Influence of Hybridization and Substitution on the Properties of the CH···O Hydrogen Bond. Journal of Physical Chemistry A, 2001, 105, 10607-10612.	2.5	224
212	Insertion of Lithium Ions into Carbon Nanotubes:Â An ab Initio Study. Journal of Physical Chemistry A, 2001, 105, 10397-10403.	2.5	98
213	Proton Conduction by a Chain of Water Molecules in Carbonic Anhydrase. Journal of Physical Chemistry B, 2001, 105, 6420-6426.	2.6	42
214	Boronâ^'Nitrogen (BN) Substitution Patterns in C/BN Hybrid Fullerenes:  C60-2x(BN)x (x = 1â^'7). Journal of Physical Chemistry A, 2001, 105, 8376-8384.	2.5	49
215	Strength of the CαH··O Hydrogen Bond of Amino Acid Residues. Journal of Biological Chemistry, 2001, 276, 9832-9837.	3.4	267
216	Theoretical Studies of Excited State Proton Transfer in Small Model Systems. Journal of Physical Chemistry A, 2000, 104, 5898-5909.	2.5	171

#	Article	IF	CITATIONS
217	Comparison of methods for calculating the properties of intramolecular hydrogen bonds. Excited state proton transfer. Journal of Chemical Physics, 1999, 111, 849-858.	3.0	23
218	Effects of chemical substitution upon excited state proton transfer. Fluoroderivatives of salicylaldimine. Chemical Physics, 1999, 246, 65-74.	1.9	36
219	Title is missing!. Structural Chemistry, 1999, 10, 391-392.	2.0	10
220	Effect of adjoining aromatic ring upon excited state proton transfer, o-hydroxybenzaldehyde. Computational and Theoretical Chemistry, 1999, 467, 37-49.	1.5	76
221	Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond?. Journal of the American Chemical Society, 1999, 121, 9411-9422.	13.7	940
222	Activation and Cleavage of Hâ^'R Bonds through Intermolecular HH Bonding upon Reaction of Proton Donors HR with 18-Electron Transition Metal Hydrides. Journal of Physical Chemistry A, 1999, 103, 514-520.	2.5	52
223	Effect of nonproximate atomic substitution on excited state intramolecular proton transfer. Journal of Computational Chemistry, 1998, 19, 129-138.	3.3	16
224	Structure, Stability, and Bonding of BC2N:Â An ab Initio Study. Journal of Physical Chemistry A, 1998, 102, 10134-10141.	2.5	27
225	Hardness and Chemical Potential Profiles for Some Open-Shell HAB → HBA Type Reactions. Ab Initio and Density Functional Study. Journal of Physical Chemistry A, 1998, 102, 5967-5973.	2.5	28
226	Intermolecular H···H Bonding and Proton Transfer in Semisandwich Re and Ru Complexes. Journal of Physical Chemistry A, 1998, 102, 4813-4818.	2.5	76
227	Intermolecular MH···HR Bonding in Monohydride Mo and W Complexes. Journal of Physical Chemistry A, 1998, 102, 260-269.	2.5	74
228	Inter- and Intramolecular Hydrogen Bonds with Transition Metal Atoms in Metallocenes of the Iron Subgroup. Organometallics, 1998, 17, 4362-4367.	2.3	27
229	Excited State Intramolecular Proton Transfer in Anionic Analogues of Malonaldehyde. Journal of Physical Chemistry A, 1997, 101, 5901-5909.	2.5	34
230	INFLUENCE OF ISOTOPIC SUBSTITUTION ON STRENGTH OF HYDROGEN BONDS OF COMMON ORGANIC GROUPS. Journal of Physical Organic Chemistry, 1997, 10, 383-395.	1.9	11
231	Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations. The Journal of Physical Chemistry, 1996, 100, 6445-6450.	2.9	37
232	Proton transfer between phenol and ammonia in ground and excited electronic states. Chemical Physics Letters, 1996, 262, 567-572.	2.6	59
233	Characterization of ground and excited electronic state deprotonation energies of systems containing double bonds using natural bond orbital analysis. Journal of Chemical Physics, 1996, 105, 4675-4691.	3.0	5
234	Proton Transfer Properties of Imidazole. The Journal of Physical Chemistry, 1996, 100, 9235-9241.	2.9	94

#	Article	IF	CITATIONS
235	Critical assessment of density functional methods for study of proton transfer processes. (FHF)â^. Chemical Physics Letters, 1995, 234, 159-164.	2.6	82
236	Proton transfer in H5O2+ and H3O2? with an external restraining force. International Journal of Quantum Chemistry, 1995, 56, 567-575.	2.0	5
237	Ab initiostudy of the structure of guanine-cytosine base pair conformers in gas phase and polar solvents. Molecular Physics, 1995, 84, 469-480.	1.7	33
238	Proton Transfer in Ground and Excited Electronic States of Glyoxal Monohydrazone. The Journal of Physical Chemistry, 1995, 99, 7352-7359.	2.9	17
239	Transfer of a Proton between N Atoms in Excited Electronic States of 1,5-Diaza-1,3-pentadiene. The Journal of Physical Chemistry, 1995, 99, 9854-9861.	2.9	22
240	Hydrogen Bonding and Proton Transfer in the Ground and Lowest Excited Singlet States of o-Hydroxyacetophenone. The Journal of Physical Chemistry, 1995, 99, 642-649.	2.9	86
241	The Nonexistence of Specially Stabilized Hydrogen Bonds in Enzymes. Journal of the American Chemical Society, 1995, 117, 6970-6975.	13.7	142
242	Excited-State Energetics and Proton-Transfer Barriers in Malonaldehyde. The Journal of Physical Chemistry, 1994, 98, 3582-3587.	2.9	86
243	Ab initiostudy of He(1S)+Cl2(X 1Σg,3Îu) potential energy surfaces. Journal of Chemical Physics, 1994, 101, 6800-6809.	3.0	36
244	Variation of atomic charges during proton transfer in hydrogen bonds. Journal of Computational Chemistry, 1994, 15, 553-560.	3.3	18
245	Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone. Journal of Chemical Physics, 1994, 101, 9755-9765.	3.0	91
246	Search for Analytical Functions To Simulate Proton Transfers in Hydrogen Bonds. ACS Symposium Series, 1994, , 125-138.	0.5	9
247	Ground and excited state intramolecular proton transfer in OCCNN ring. Chemical Physics Letters, 1993, 204, 36-44.	2.6	22
248	Modeling proton transfer potentials in angularly deformed hydrogen bonds. International Journal of Quantum Chemistry, 1993, 48, 77-87.	2.0	8
249	Behavior of interaction energy and intramolecular bond stretch in linear and bifurcated hydrogen bonds. International Journal of Quantum Chemistry, 1993, 48, 181-190.	2.0	7
250	Comparison of ground and triplet state geometries of malonaldehyde. International Journal of Quantum Chemistry, 1993, 48, 419-429.	2.0	7
251	Applicability of the Marcus equation to proton transfer in symmetric and unsymmetric systems. Computational and Theoretical Chemistry, 1993, 285, 27-32.	1.5	3
252	Hydrogen bonding and proton transfers of the amide group. Journal of the American Chemical Society, 1993, 115, 1958-1963.	13.7	76

#	Article	IF	CITATIONS
253	Variational transition state theory calculation of proton transfer dynamics in (H3CHCH3) The Journal of Physical Chemistry, 1993, 97, 1765-1769.	2.9	26
254	Proton transfer in the ground and first excited triplet states of malonaldehyde. The Journal of Physical Chemistry, 1992, 96, 9764-9767.	2.9	48
255	Calculation of barriers to proton transfer using multiconfiguration selfâ€consistentâ€field methods. I. Effects of localization. Journal of Chemical Physics, 1992, 97, 7507-7518.	3.0	30
256	Calculation of barriers to proton transfer using variations of multiconfiguration selfâ€consistentâ€field methods. II. Configuration interaction. Journal of Chemical Physics, 1992, 97, 7519-7527.	3.0	18
257	Effect of bond multiplicity upon hydrogen bonding and proton transfers. Double bonded atoms. Journal of the American Chemical Society, 1992, 114, 3650-3655.	13.7	19
258	Energetics, proton transfer rates, and kinetic isotope effects in bent hydrogen bonds. Journal of the American Chemical Society, 1992, 114, 5849-5856.	13.7	48
259	Modeling of coupled proton transfers by analytic functions. International Journal of Quantum Chemistry, 1992, 44, 109-124.	2.0	12
260	Calculation of barriers to proton transfer using a variety of electron correlation methods. International Journal of Quantum Chemistry, 1992, 44, 817-835.	2.0	10
261	Effect of proton transfer on neighboring hydrogen-bond strength. International Journal of Quantum Chemistry, 1991, 40, 37-48.	2.0	0
262	Correlation between interaction energy and shift of the carbonyl stretching frequency. Chemical Physics Letters, 1990, 174, 179-184.	2.6	26
263	Comparison of Morokuma and perturbation theory approaches to decomposition of interaction energy. (NH4)+…NH3. Chemical Physics Letters, 1990, 166, 57-64.	2.6	77
264	Dissection of basis set superposition error at SCF and correlated levels: HF dimer. Computational and Theoretical Chemistry, 1989, 199, 9-22.	1.5	7
265	Hydrogen bonding and proton transfers involving the carboxylate group. Journal of the American Chemical Society, 1989, 111, 23-31.	13.7	71
266	Factors contributing to distortion energies of bent hydrogen bonds. Implications for proton-transfer potentials. The Journal of Physical Chemistry, 1989, 93, 6565-6574.	2.9	32
267	Perturbations of proton transfer potentials caused by polar molecules. International Journal of Quantum Chemistry, 1989, 36, 211-217.	2.0	2
268	Effects of external ions upon proton transfer reactions: H-bonded systems containing HCOOH. International Journal of Quantum Chemistry, 1988, 34, 137-147.	2.0	10
269	Relationship between the angular characteristics of a hydrogen bond and the energetics of proton transfer occurring within. Journal of Molecular Structure, 1988, 177, 79-91.	3.6	14
270	Vibrational frequencies and intensities of Hâ€bonded and Liâ€bonded complexes. H3Nâ‹â‹HCl and H3Nâ‹â‹ Journal of Chemical Physics, 1988, 89, 3131-3138.	LiCl. 3.0	42

#	Article	IF	CITATIONS
271	Primary and secondary basis set superposition error at the SCF and MP2 levels. H3Nâ€â€Łi+ and H2Oâ€â€Łi+. Journal of Chemical Physics, 1987, 87, 1194-1204.	3.0	81
272	Structure, energetics, and vibrational spectrum of H2O–HCl. Journal of Chemical Physics, 1987, 87, 5928-5936.	3.0	66
273	Vibrational frequencies and intensities of Hâ€bonded systems. 1:1 and 1:2 complexes of NH3 and PH3 with HF. Journal of Chemical Physics, 1987, 87, 2214-2224.	3.0	28
274	Kinetics of proton transfer in (H3CHCH3) The Journal of Physical Chemistry, 1987, 91, 724-730.	2.9	25
275	Hydrogen bonding and proton transfers involving triply bonded atoms. Acetylene and hydrocyanic acid. Journal of the American Chemical Society, 1987, 109, 4199-4206.	13.7	76
276	Ab Initio investigation of the structure of hydrogen halide-amine complexes in the gas phase and in a polarizable medium. International Journal of Quantum Chemistry, 1987, 32, 47-56.	2.0	40
277	Three-dimensional spatial characteristics of primary and secondary basis set superposition error. Chemical Physics Letters, 1987, 140, 338-344.	2.6	15
278	Basis sets for molecular interactions. 2. Application to H3N?HF, H3N?HOH, H2O?HF, (NH3)2, and H3CH?OH2. Journal of Computational Chemistry, 1987, 8, 674-682.	3.3	70
279	Quantum mechanical test of Marcus theory. Effects of alkylation upon proton transfer. The Journal of Physical Chemistry, 1986, 90, 2969-2974.	2.9	47
280	Analysis of the principles governing proton-transfer reactions. Carboxyl group. Journal of the American Chemical Society, 1986, 108, 7178-7186.	13.7	39
281	Energetics of proton transfer between carbon atoms (H3CH ? CH3)?. International Journal of Quantum Chemistry, 1986, 29, 285-292.	2.0	23
282	Factors influencing proton positions in biomolecules. International Journal of Quantum Chemistry, 1986, 29, 817-827.	2.0	26
283	The basis set dependence of structures and energies of various states of cyclodisiloxane. International Journal of Quantum Chemistry, 1986, 29, 1191-1208.	2.0	12
284	Correction of the basis set superposition error in SCF and MP2 interaction energies. The water dimer. Journal of Chemical Physics, 1986, 84, 6328-6335.	3.0	128
285	The potential energy surface of (NH3)2. Journal of Chemical Physics, 1986, 84, 341-347.	3.0	76
286	Additivity of the effects of external ions and dipoles upon the energetics of proton transfer. International Journal of Quantum Chemistry, 1986, 30, 71-79.	2.0	1
287	Effects of external ions on the energetics of proton transfers across hydrogen bonds. The Journal of Physical Chemistry, 1985, 89, 262-266.	2.9	53
288	Comparison between proton transfers involving carbonyl and hydroxyl oxygens. The Journal of Physical Chemistry, 1985, 89, 3053-3060.	2.9	26

#	Article	IF	CITATIONS
289	Effects of alkylation upon the proton affinities of nitrogen and oxygen bases. Journal of Computational Chemistry, 1985, 6, 168-172.	3.3	9
290	Comparison of proton transfers in (S2H5)+ and (O2H5)+. Journal of Chemical Physics, 1985, 82, 3316-3321.	3.0	25
291	Influence of basis set on the calculated properties of (H3N–HCl). Journal of Chemical Physics, 1985, 82, 4131-4134.	3.0	17
292	Theoretical studies of proton transfers. Accounts of Chemical Research, 1985, 18, 174-180.	15.6	219
293	Effects of external ions on the dynamics of proton transfer across a hydrogen bond. The Journal of Physical Chemistry, 1985, 89, 1835-1840.	2.9	36
294	Contribution of dispersion to the properties of H2Sâ€â€HF and H2Sâ€â€HCl. Journal of Chemical Physics, 1985, 83, 1778-1783.	3.0	17
295	Analysis of the principles governing proton-transfer reactions. Comparison of the imine and amine groups. Journal of the American Chemical Society, 1985, 107, 7690-7696.	13.7	20
296	Proton transfers between first―and secondâ€row atoms: (H2OHSH2)+ and (H3NHSH2)+. Journal of Chemical Physics, 1984, 80, 1982-1987.	3.0	20
297	Ab initio study of FH–PH3 and ClH–PH3 including the effects of electron correlation. Journal of Chemical Physics, 1984, 81, 2713-2716.	3.0	20
298	Effects of basis set and electron correlation on the calculated properties of the ammonia dimer. Journal of Chemical Physics, 1984, 81, 407-409.	3.0	74
299	Studies of dispersion energy in hydrogenâ€bonded systems. H2O–HOH, H2O–HF, H3N–HF, HF–HF. Journ of Chemical Physics, 1984, 80, 1535-1542.	nal 3.0	35
300	Effects of molecular charge and methyl substitution on proton transfer between oxygen atoms. Journal of the American Chemical Society, 1984, 106, 6266-6273.	13.7	58
301	Ab initio comparison of H bonds and Li bonds. Complexes of LiF, LiCl, HF, and HCl with NH3. Journal of Chemical Physics, 1984, 81, 4014-4017.	3.0	80
302	Ab initio study of proton transfers including effects of electron correlation. International Journal of Quantum Chemistry, 1983, 23, 739-751.	2.0	61
303	Energetics and electronic rearrangements of proton transfer in (H3NHOH2)+. International Journal of Quantum Chemistry, 1983, 23, 753-764.	2.0	8
304	Hydrogen bonding of the carbonyl groups of uridine nucleosides. Biopolymers, 1983, 22, 731-745.	2.4	14
305	Role of d functions in ab initio calculation of the equilibrium structure of H2S–HF. Journal of Chemical Physics, 1983, 78, 599-600.	3.0	13
306	Ab initio molecular orbital estimates of charge partitioning between Bjerrum and ionic defects in ice. The Journal of Physical Chemistry, 1983, 87, 4267-4272.	2.9	60

#	Article	IF	CITATIONS
307	Molecular orbital study of proton transfer in (H3NHOH2)+. The Journal of Physical Chemistry, 1983, 87, 1145-1153.	2.9	29
308	Mo/ller–Plesset treatment of electron correlation effects in (HOHOH)â^'. Journal of Chemical Physics, 1982, 77, 4586-4593.	3.0	72
309	Comparison of proton transfers in heterodimers and homodimers of NH3 and OH2. Journal of Chemical Physics, 1982, 77, 4039-4050.	3.0	81
310	Proton transfers in hydrogen-bonded systems. 2. Electron correlation effects in diamminehydrogen(1+). Journal of the American Chemical Society, 1981, 103, 2169-2173.	13.7	75
311	Proton transfers in hydrogen-bonded systems. Cationic oligomers of water. Journal of the American Chemical Society, 1981, 103, 315-320.	13.7	151
312	Proton transfers in hydrogen bonded systems. Electron correlation effects in (H3NHOH2)+. Chemical Physics Letters, 1981, 79, 39-42.	2.6	20
313	Proton transfers in hydrogen-bonded systems V. Analysis of electronic redistributions in (N2H7)+. International Journal of Quantum Chemistry, 1981, 20, 221-229.	2.0	4
314	Proton transfers in hydrogenâ€bonded systems. VI. Electronic redistributions in (N2H7)+ and (O2H5)+. Journal of Chemical Physics, 1981, 75, 5791-5801.	3.0	30
315	Proton transfer potentials in hydrogen-bonded systems: (H5O2)+. International Journal of Quantum Chemistry, 1980, 18, 199-206.	2.0	0
316	Calculating the Properties of Hydrogen Bonds by ab Initio Methods. Reviews in Computational Chemistry, 0, , 165-218.	1.5	37