

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7560046/publications.pdf Version: 2024-02-01

		840776	839539
21	319	11	18
papers	citations	h-index	g-index
21	21	21	358
all docs	docs citations	times ranked	citing authors

Υι ΤΛΟ

#	Article	IF	CITATIONS
1	Anisotropic phonon transport in van der Waals nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 427, 127920.	2.1	0
2	Observation of superdiffusive phonon transport in aligned atomic chains. Nature Nanotechnology, 2021, 16, 764-768.	31.5	43
3	Non-monotonic boundary resistivity for electron transport in metal nanowires. Applied Physics Letters, 2021, 118, 153105.	3.3	2
4	Resonance in Atomic-Scale Sliding Friction. Nano Letters, 2021, 21, 4615-4621.	9.1	20
5	High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K. Nature Communications, 2021, 12, 3926.	12.8	26
6	Surface Charge Density Inside a Silicon Nitride Nanopore. Langmuir, 2021, 37, 10521-10528.	3.5	15
7	Bidirectional Modulation of Contact Thermal Resistance between Boron Nitride Nanotubes from a Polymer Interlayer. Nano Letters, 2021, 21, 7317-7324.	9.1	14
8	Remarkable suppression of lattice thermal conductivity by electron-phonon scattering in iridium dioxide nanowires. Materials Today Physics, 2021, 21, 100517.	6.0	4
9	Modulating thermal conductance across the metal/graphene/SiO ₂ interface with ion irradiation. Physical Chemistry Chemical Physics, 2021, 23, 22760-22767.	2.8	4
10	Theory of aerodynamic heating from molecular collision analysis. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126098.	2.1	2
11	Effective Lorenz Number of the Point Contact between Silver Nanowires. Nano Letters, 2020, 20, 8576-8583.	9.1	2
12	Electrical and Thermal Transport through Silver Nanowires and Their Contacts: Effects of Elastic Stiffening. Nano Letters, 2020, 20, 7389-7396.	9.1	40
13	Net negative contributions of free electrons to the thermal conductivity of NbSe ₃ nanowires. Physical Chemistry Chemical Physics, 2020, 22, 21131-21138.	2.8	4
14	Experimental measurement of thermal conductivity along different crystallographic planes in graphite. Journal of Applied Physics, 2020, 128, .	2.5	6
15	The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. Nanoscale, 2020, 12, 14838-14846.	5.6	12
16	High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Bandâ€Extrema Alignment. Advanced Functional Materials, 2020, 30, 2001200.	14.9	32
17	Thermal Bubble Nucleation in Graphene Nanochannels. Journal of Physical Chemistry C, 2019, 123, 3482-3490.	3.1	11
18	Distinct Signatures of Electron–Phonon Coupling Observed in the Lattice Thermal Conductivity of NbSe ₃ Nanowires. Nano Letters, 2019, 19, 415-421.	9.1	37

Υι ΤΑΟ

#	Article	IF	CITATIONS
19	Transient and steady state heat transport in layered materials from molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2018, 121, 72-78.	4.8	8
20	Selective ion-permeation through strained and charged graphene membranes. Nanotechnology, 2018, 29, 035402.	2.6	14
21	Mean free path dependent phonon contributions to interfacial thermal conductance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1899-1904.	2.1	23