Anna Chiorino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559928/publications.pdf

Version: 2024-02-01

109321 4,066 73 35 h-index citations papers

g-index 73 73 73 3250 docs citations times ranked citing authors all docs

114465

63

#	Article	IF	CITATIONS
1	Aerobic oxidation of alcohols on Au/TiO2 catalyst: new insights on the role of active sites in the oxidation of primary and secondary alcohols. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2016, 147, 391-403.	1.8	5
2	Effect of ceria structural properties on the catalytic activity of Au–CeO2 catalysts for WGS reaction. Physical Chemistry Chemical Physics, 2013, 15, 13400.	2.8	16
3	Gold catalysts for low temperature water-gas shift reaction: Effect of ZrO2 addition to CeO2 support. Applied Catalysis B: Environmental, 2012, 125, 507-515.	20.2	38
4	Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A FTIR study. Catalysis Today, 2012, 181, 62-67.	4.4	48
5	New insight on the nature of catalytically active gold sites: Quantitative CO chemisorption data and analysis of FTIR spectra of adsorbed CO and of isotopic mixtures. Journal of Catalysis, 2009, 262, 169-176.	6.2	64
6	Catalytically active gold sites: nanoparticles, borderline sites, clusters, cations, anions? FTIR spectra analysis of 12CO and of 12CO-13CO isotopic mixtures. Gold Bulletin, 2009, 42, 106-112.	2.7	37
7	Quantitative determination of sites able to chemisorb CO on Au/ZrO2 catalysts. Applied Catalysis A: General, 2009, 356, 31-35.	4.3	42
8	Highly Dispersed Gold on Zirconia: Characterization and Activity in Lowâ€Temperature Water Gas Shift Tests. ChemSusChem, 2008, 1, 320-326.	6.8	33
9	Spectroscopic features and reactivity of CO adsorbed on different Au/CeO2 catalysts. Journal of Catalysis, 2007, 245, 308-315.	6.2	133
10	New gold catalysts supported on mixed ceria-titania oxides for water-gas shift and preferential CO oxidation reactions. Reaction Kinetics and Catalysis Letters, 2007, 91, 213-221.	0.6	18
11	CO Adsorption on Gold Clusters Stabilized on Ceriaâ^'Titania Mixed Oxides:Â Comparison with Reference Catalysts. Journal of Physical Chemistry B, 2006, 110, 23329-23336.	2.6	18
12	Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. Journal of Catalysis, 2006, 237, 431-434.	6.2	88
13	Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications. Applied Catalysis B: Environmental, 2006, 63, 94-103.	20.2	58
14	FT-IR and UV-Vis-NIR characterisation of pure and mixed MoO3 and WO3 thin films. Thin Solid Films, 2005, 490, 74-80.	1.8	21
15	Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2. Applied Catalysis B: Environmental, 2005, 57, 201-209.	20.2	89
16	MoO3–WO3 mixed oxide powder and thin films for gas sensing devices: A spectroscopic characterisation. Sensors and Actuators B: Chemical, 2005, 111-112, 28-35.	7.8	19
17	Interface species and effect of hydrogen on their amount in the CO oxidation on Au/ZnO. Applied Catalysis B: Environmental, 2004, 52, 259-266.	20.2	56
18	FTIR study of nanosized gold on ZrO2 and TiO2. Surface Science, 2003, 532-535, 377-382.	1.9	58

#	Article	IF	Citations
19	FTIR study of methanol decomposition on gold catalyst for fuel cells. Journal of Power Sources, 2003, 118, 304-310.	7.8	74
20	Au/TiO2 nanostructured catalyst: pressure and temperature effects on the FTIR spectra of CO adsorbed at 90 K. Surface Science, 2002, 502-503, 513-518.	1.9	37
21	Chemisorption and catalytic properties of gold nanoparticles on different oxides. Studies in Surface Science and Catalysis, 2001, , 77-86.	1.5	9
22	Preparation and characterization of SnO2 and WOx–SnO2 nanosized powders and thick films for gas sensing. Sensors and Actuators B: Chemical, 2001, 78, 89-97.	7.8	50
23	Au/TiO2 nanostructured catalyst: effects of gold particle sizes on CO oxidation at 90 K. Materials Science and Engineering C, 2001, 15, 215-217.	7. 3	85
24	Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation. Journal of Catalysis, 2001, 202, 256-267.	6.2	476
25	Doping of a nanostructured titania thick film: structural and electrical investigations. Sensors and Actuators B: Chemical, 2000, 68, 274-280.	7.8	83
26	FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surface Science, 2000, 454-456, 942-946.	1.9	106
27	FTIR Study of CO Oxidation on Au/TiO2at 90 K and Room Temperature. An Insight into the Nature of the Reaction Centers. Journal of Physical Chemistry B, 2000, 104, 5414-5416.	2.6	179
28	Characterization of materials for gas sensors. Surface chemistry of SnO2 and MoOx–SnO2 nano-sized powders and electrical responses of the related thick films. Sensors and Actuators B: Chemical, 1999, 59, 203-209.	7.8	30
29	Preparation and characterization of SnO2 and MoOx–SnO2 nanosized powders for thick film gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 338-349.	7.8	81
30	FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts. Journal of Catalysis, 1999, 188, 176-185.	6.2	419
31	Electrical and spectroscopic characterization of SnO2 and Pd-SnO2 thick films studied as CO gas sensors. Sensors and Actuators B: Chemical, 1998, 47, 205-212.	7.8	37
32	Preparation, Characterization, and Activity of Cu/TiO2Catalysts. I. Influence of the Preparation Method on the Dispersion of Copper in Cu/TiO2. Journal of Catalysis, 1997, 165, 129-139.	6.2	138
33	Preparation, Characterization, and Activity of Cu/TiO2Catalysts. II. Effect of the Catalyst Morphology on the Hydrogenation of 1,3-Cyclooctadiene and the CO–NO Reaction on Cu/TiO2Catalysts. Journal of Catalysis, 1997, 165, 140-149.	6.2	27
34	Characterization of SnO2-based gas sensors. A spectroscopic and electrical study of thick films from commercial and laboratory-prepared samples. Sensors and Actuators B: Chemical, 1997, 44, 474-482.	7.8	48
35	Effects of ageing on porous silicon photoluminescence: Correlation with FTIR and UV-Vis spectra. Solid State Communications, 1997, 101, 11-16.	1.9	35
36	FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Copper Supported on ZnO and TiO2. 1. The Journal of Physical Chemistry, 1996, 100, 3617-3624.	2.9	126

#	Article	IF	Citations
37	Effects of structural defects and alloying on the FTIR spectra of CO adsorbed on. Surface Science, 1996, 368, 264-269.	1.9	29
38	FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2. 2. The Journal of Physical Chemistry, 1996, 100, 3625-3631.	2.9	278
39	Moisture effects on pure and Pd-doped SnO2 thick films analysed by FTIR spectroscopy and conductance measurements. Sensors and Actuators B: Chemical, 1995, 25, 520-524.	7.8	44
40	An IR study of CO-sensing mechanism on Au/ZnO. Sensors and Actuators B: Chemical, 1995, 25, 540-543.	7.8	60
41	Chemical and electronic characterization of pure SnO2 and Cr-doped SnO2 pellets through their different response to NO. Sensors and Actuators B: Chemical, 1995, 25, 564-567.	7.8	14
42	Formation of the MoVI Surface Phase on MoOx/ZrO2 Catalysts. The Journal of Physical Chemistry, 1995, 99, 5556-5567.	2.9	52
43	The oxidation and scrambling of CO with oxygen at room temperature on Au/ZnO. Catalysis Letters, 1994, 29, 225-234.	2.6	81
44	Reduction of nitric oxide with hydrogen on chromia / zirconia catalysts. Applied Catalysis B: Environmental, 1994, 4, 257-273.	20.2	2
45	Cu-Ru/MgO Systems - Spectroscopic Evidence of the Formation of Bimetallic Particles: CO Adsorption and CO-O2 Interaction. Journal of Catalysis, 1993, 142, 437-447.	6.2	6
46	Adsorption and deuteration of acetone-d6 on Pt/ZnO catalysts: An IR study of the effects of sample pretreatment. Journal of Molecular Catalysis, 1993, 81, 373-386.	1.2	0
47	An IR study of NO adsorption on a CrOx/ZrO2 catalyst. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1345-1359.	0.1	26
48	Surface chemistry and electronic effects of H2(D2) on pure SnO2 and Cr-doped SnO2. Sensors and Actuators B: Chemical, 1993, 16, 367-371.	7.8	13
49	Surface chemistry and electronic effects of H2 (D2) on two different microcrystalline ZnO powders. Surface Science, 1993, 287-288, 228-234.	1.9	64
50	IR study of NO reduction by CO on Pt/ZnO catalysts. Surface Science, 1992, 269-270, 514-519.	1.9	8
51	A comparative study of SnO2 and CrOx/SnO2 powders: their microstructures and their different response to CO, NO, H2 and CH4 atmospheres. Sensors and Actuators B: Chemical, 1992, 7, 691-699.	7.8	23
52	Nature of the active site for propene hydrogenation on CrOx/ZrO2 catalysts. Journal of Molecular Catalysis, 1992, 75, 305-319.	1.2	10
53	IR study of gas-sensor materials: NO interaction on ZnO and TiO2, pure or modified by metals. Sensors and Actuators B: Chemical, 1992, 7, 645-650.	7.8	28
54	Infrared study of surface chromium species on a CrOx/ZrO2 catalyst. Surface Science, 1991, 251-252, 1100-1105.	1.9	9

#	Article	IF	CITATIONS
55	Surface chemistry and electronic effects of O2, NO and NO/O2 on SnO2. Sensors and Actuators B: Chemical, 1991, 5, 189-192.	7.8	26
56	The adsorption of O2 and NO on $CrOx/ZrO2$ catalysts, as investigated by IR and ESR spectroscopies. Journal of Molecular Catalysis, 1991, 68, 53-71.	1.2	31
57	Chemical and physical interactions between metal and oxidic supports in catalytic systems. Materials Chemistry and Physics, 1991, 29, 65-83.	4.0	8
58	Pt/ZnO catalysts: Spectroscopic and catalytic evidences of a ligand effect as a consequence of PtZn alloying. Journal of Catalysis, 1990, 126, 381-387.	6.2	27
59	Reactivity and electronic properties of two microcrystalline ZnO surfaces: interaction with CO and CO/O2. Vacuum, 1990, 41, 16-18.	3.5	15
60	Pt/ZnO System: IR study of the vibrational and electronical effects induced by heating in CO atmosphere. Surface Science, 1990, 233, 141-152.	1.9	23
61	The nature of surface chromium species on CrOx/ZrO2 catalysts. Journal of Molecular Catalysis, 1989, 55, 23-33.	1.2	42
62	Infrared study of H2 sensing at 300 K using M/ZnO systems. Sensors and Actuators, 1989, 19, 119-124.	1.7	13
63	Infrared study of surface chemistry and electronic effects of different atmospheres on SnO2. Sensors and Actuators, 1989, 19, 151-157.	1.7	29
64	Metal/n-zinc oxide interaction: effect of the surrounding atmosphere on IR transparency. Langmuir, 1989, 5, 66-70.	3.5	18
65	IR study of the CO adsorption on Pt/ZnO samples: Evidence for a PtZn phase formation in the SMSI state. Surface Science, 1989, 209, 77-88.	1.9	21
66	Infrared evidence of metal-semiconductor interaction in a Ru/ZnO system. Surface Science, 1987, 189-190, 331-338.	1.9	29
67	Optical studies of phase interaction in Cu/ZnO catalysts. Surface Science, 1987, 189-190, 894-902.	1.9	5
68	Metal-semiconductor interaction: Effect of H2 chemisorption on the IR transparency of the system. Surface Science Letters, 1987, 183, L285-L289.	0.1	0
69	The operation of the "metal-surface selection rule―on the vibrational spectra of species adsorbed on supported copper particles. Surface Science, 1986, 178, 553-564.	1.9	13
70	Spectroscopic evidence for a new surface carbonyl species on a Cu/ZnO catalyst. Journal of the Chemical Society Chemical Communications, 1985, , 1012.	2.0	16
71	CO adsorption on small particles of Cu dispersed on microcrystalline ZnO. Surface Science, 1985, 156, 933-942.	1.9	46
72	Surface reactions of Co on a metal-semiconductor system: Cu/Zno. Surface Science, 1985, 162, 361-367.	1.9	39

#	Article	IF	CITATIONS
73	Optical properties of microcrystalline zinc oxide. Influence of defects produced by interaction with carbon monoxide. Journal of the Chemical Society, Faraday Transactions 2, 1983, 79, 1779.	1.1	37