List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7559748/publications.pdf Version: 2024-02-01

LOSÃO A LEMOS

#	Article	IF	CITATIONS
1	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
2	The Biology of <i>Streptococcus mutans</i> . Microbiology Spectrum, 2019, 7, .	3.0	357
3	A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (United Kingdom), 2008, 154, 3247-3255.	1.8	261
4	Many Means to a Common End: the Intricacies of (p)ppGpp Metabolism and Its Control of Bacterial Homeostasis. Journal of Bacteriology, 2015, 197, 1146-1156.	2.2	187
5	The Molecular Alarmone (p)ppGpp Mediates Stress Responses, Vancomycin Tolerance, and Virulence in <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 2248-2256.	2.2	176
6	Streptococcus mutans: a new Gram-positive paradigm?. Microbiology (United Kingdom), 2013, 159, 436-445.	1.8	174
7	Three gene products govern (p)ppGpp production by <i>Streptococcus mutans</i> . Molecular Microbiology, 2007, 65, 1568-1581.	2.5	146
8	The Collagen-Binding Protein Cnm Is Required for Streptococcus mutans Adherence to and Intracellular Invasion of Human Coronary Artery Endothelial Cells. Infection and Immunity, 2011, 79, 2277-2284.	2.2	144
9	Two Spx Proteins Modulate Stress Tolerance, Survival, and Virulence in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2010, 192, 2546-2556.	2.2	109
10	Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development. PLoS ONE, 2010, 5, e13478.	2.5	106
11	Basal Levels of (p)ppGpp in Enterococcus faecalis: the Magic beyond the Stringent Response. MBio, 2013, 4, e00646-13.	4.1	105
12	Physiologic Effects of Forced Down-Regulation of dnaK and groEL Expression in Streptococcus mutans. Journal of Bacteriology, 2007, 189, 1582-1588.	2.2	90
13	From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. Journal of Bacteriology, 2015, 197, 2908-2919.	2.2	88
14	Global Regulation by (p)ppGpp and CodY in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2008, 190, 5291-5299.	2.2	87
15	Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans. PLoS ONE, 2013, 8, e61358.	2.5	87
16	Role of Clp Proteins in Expression of Virulence Properties of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2009, 191, 2060-2068.	2.2	84
17	Role of (p)ppGpp in Biofilm Formation by Enterococcus faecalis. Applied and Environmental Microbiology, 2012, 78, 1627-1630.	3.1	75
18	Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Scientific Reports, 2016, 6, 32841.	3.3	72

#	Article	IF	CITATIONS
19	Role of RelA of <i>Streptococcus mutans</i> in Global Control of Gene Expression. Journal of Bacteriology, 2008, 190, 28-36.	2.2	67
20	Protocols to Study the Physiology of Oral Biofilms. Methods in Molecular Biology, 2010, 666, 87-102.	0.9	65
21	Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathogens, 2018, 14, e1007102.	4.7	63
22	Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	58
23	Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology (United Kingdom), 2012, 158, 1994-2004.	1.8	57
24	Novel Antibiofilm Chemotherapy Targets Exopolysaccharide Synthesis and Stress Tolerance in Streptococcus mutans To Modulate Virulence Expression <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 6201-6211.	3.2	55
25	The Spx Regulator Modulates Stress Responses and Virulence in Enterococcus faecalis. Infection and Immunity, 2012, 80, 2265-2275.	2.2	55
26	Collagenâ€binding proteins of <i>Streptococcus mutans</i> and related streptococci. Molecular Oral Microbiology, 2017, 32, 89-106.	2.7	50
27	The Collagen Binding Protein Cnm Contributes to Oral Colonization and Cariogenicity of Streptococcus mutans OMZ175. Infection and Immunity, 2015, 83, 2001-2010.	2.2	48
28	A Hypothetical Protein of Streptococcus mutans Is Critical for Biofilm Formation. Infection and Immunity, 2005, 73, 3147-3151.	2.2	44
29	Manganese Uptake, Mediated by SloABC and MntH, Is Essential for the Fitness of Streptococcus mutans. MSphere, 2020, 5, .	2.9	42
30	Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx. Scientific Reports, 2017, 7, 16018.	3.3	39
31	Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans. Journal of Bacteriology, 2015, 197, 2160-2170.	2.2	38
32	Modification of Streptococcus mutans Cnm by PgfS Contributes to Adhesion, Endothelial Cell Invasion, and Virulence. Journal of Bacteriology, 2014, 196, 2789-2797.	2.2	36
33	Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State. PLoS ONE, 2014, 9, e115839.	2.5	35
34	clpB, a class III heat-shock gene regulated by CtsR, is involved in thermotolerance and virulence of Enterococcus faecalis. Microbiology (United Kingdom), 2011, 157, 656-665.	1.8	32
35	Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. Microbiology (United Kingdom), 2011, 157, 2880-2890.	1.8	30
36	Transcriptional and Phenotypic Characterization of Novel Spx-Regulated Genes in Streptococcus mutans. PLoS ONE, 2015, 10, e0124969.	2.5	30

#	Article	IF	CITATIONS
37	Heterologous expression of <i>Streptococcus mutans</i> Cnm in <i>Lactococcus lactis</i> promotes intracellular invasion, adhesion to human cardiac tissues and virulence. Virulence, 2017, 8, 18-29.	4.4	28
38	The Cell Wall-Targeting Antibiotic Stimulon of Enterococcus faecalis. PLoS ONE, 2013, 8, e64875.	2.5	27
39	Transcriptional profile of glucoseâ€shocked and acidâ€adapted strains of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2015, 30, 496-517.	2.7	27
40	Cnm is a major virulence factor of invasive <i><scp>S</scp>treptococcus mutans</i> and part of a conserved threeâ€gene locus. Molecular Oral Microbiology, 2014, 29, 11-23.	2.7	24
41	Inactivation of the <i>spxA1</i> or <i>spxA2</i> gene of <i>Streptococcus mutans</i> decreases virulence in the rat caries model. Molecular Oral Microbiology, 2017, 32, 142-153.	2.7	24
42	Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Frontiers in Microbiology, 2020, 11, 601417.	3.5	24
43	Cnm is a major virulence factor of invasive <i>Streptococcus mutans</i> and part of a conserved three-gene locus. Molecular Oral Microbiology, 2014, 29, 11-23.	2.7	24
44	Osmotic stress responses ofStreptococcus mutansUA159. FEMS Microbiology Letters, 2006, 255, 240-246.	1.8	22
45	Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Molecular Oral Microbiology, 2010, 25, 331-342.	2.7	21
46	A Modular Synthetic Route Involving <i>N</i> -Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 7275-7295.	6.4	21
47	Basal levels of (p)ppGpp differentially affect the pathogenesis of infective endocarditis in Enterococcus faecalis. Microbiology (United Kingdom), 2018, 164, 1254-1265.	1.8	21
48	Opportunities for Disrupting Cariogenic Biofilms. Advances in Dental Research, 2009, 21, 17-20.	3.6	18
49	Regulatory circuits controlling Spx levels in <i>Streptococcus mutans</i> . Molecular Microbiology, 2020, 114, 109-126.	2.5	17
50	Biofilm Assays on Fibrinogen-coated Silicone Catheters and 96-well Polystyrene Plates. Bio-protocol, 2019, 9, .	0.4	17
51	The Biology ofStreptococcus mutans. , 2019, , 435-448.		16
52	Increased Oxidative Stress Tolerance of a Spontaneously Occurring <i>perR</i> Gene Mutation in Streptococcus mutans UA159. Journal of Bacteriology, 2021, 203, .	2.2	16
53	Disruption of a Novel Iron Transport System Reverses Oxidative Stress Phenotypes of a <i>dpr</i> Mutant Strain of Streptococcus mutans. Journal of Bacteriology, 2018, 200, .	2.2	15
54	Biology of Oral Streptococci. , 0, , 426-434.		15

#	Article	IF	CITATIONS
55	Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by <i>Streptococcus mutans</i> in an animal model. Molecular Oral Microbiology, 2021, 36, 214-224.	2.7	14
56	The CtsR regulator controls the expression of clpC, clpE and clpP and is required for the virulence of Enterococcus faecalis in an invertebrate model. Antonie Van Leeuwenhoek, 2016, 109, 1253-1259.	1.7	13
57	Enterococcus faecalis Antagonizes Pseudomonas aeruginosa Growth in Mixed-Species Interactions. Journal of Bacteriology, 2022, 204, .	2.2	13
58	CovR and VicRKX Regulate Transcription of the Collagen Binding Protein Cnm of Streptococcus mutans. Journal of Bacteriology, 2018, 200, .	2.2	12
59	Detection of Streptococcus mutans in symptomatic and asymptomatic infected root canals. Clinical Oral Investigations, 2021, 25, 3535-3542.	3.0	12
60	Characterization of the pgf operon involved in the posttranslational modification of Streptococcus mutans surface proteins. Scientific Reports, 2018, 8, 4705.	3.3	11
61	<i>PepO</i> is a target of the two-component systems VicRK and CovR required for systemic virulence of <i>Streptococcus mutans</i> . Virulence, 2020, 11, 521-536.	4.4	11
62	Deficiency of MecA in Streptococcus mutans Causes Major Defects in Cell Envelope Biogenesis, Cell Division, and Biofilm Formation. Frontiers in Microbiology, 2018, 9, 2130.	3.5	10
63	c-di-AMP Is Essential for the Virulence of <i>Enterococcus faecalis</i> . Infection and Immunity, 2021, 89, e0036521.	2.2	9
64	Phenotypic and Genotypic Characterization of Streptococcus mutans Strains Isolated from Endodontic Infections. Journal of Endodontics, 2020, 46, 1876-1883.	3.1	8
65	Amyloid Aggregation of Streptococcus mutans Cnm Influences Its Collagen-Binding Activity. Applied and Environmental Microbiology, 2021, 87, e0114921.	3.1	8
66	The AdcACB/AdcAll system is essential for zinc homeostasis and an important contributor of <i>Enterococcus faecalis</i> virulence. Virulence, 2022, 13, 592-608.	4.4	7
67	Whole genome sequence and phenotypic characterization of a Cbm ⁺ serotype <i>e</i> strain of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2018, 33, 257-269.	2.7	4
68	Stress Responses of Streptococci. , 2011, , 251-303.		4
69	Disruption of the <i>adh</i> (Acetoin Dehydrogenase) Operon Has Wide-Ranging Effects on Streptococcus mutans Growth and Stress Response. Journal of Bacteriology, 2022, 204, jb0057821.	2.2	3
70	A New Perspective of an Old Villain: Revisiting Biomarkers of Caries Development. EBioMedicine, 2017, 25, 14-15.	6.1	2
71	Ex vivo Model of Human Aortic Valve Bacterial Colonization. Bio-protocol, 2017, 7, .	0.4	1
72	Methods for Using the Galleria mellonella Invertebrate Model to Probe Enterococcus faecalis Pathogenicity. Methods in Molecular Biology, 2022, , 177-183.	0.9	1

#	Article	IF	CITATIONS
73	Lectin Binding Analysis of Streptococcus mutans Glycoproteins. Bio-protocol, 2015, 5, .	0.4	0