
Michel R Leroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IFT trains overcome an NPHP module barrier at the transition zone. Journal of Cell Biology, 2022, 221, .	5.2	4
2	UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism. American Journal of Human Genetics, 2021, 108, 134-147.	6.2	15
3	CDKL kinase regulates the length of the ciliary proximal segment. Current Biology, 2021, 31, 2359-2373.e7.	3.9	11
4	The Canadian Rare Diseases Models and Mechanisms (RDMM) Network: Connecting Understudied Genes to Model Organisms. American Journal of Human Genetics, 2020, 106, 143-152.	6.2	30
5	Ciliary Tip Signaling Compartment Is Formed and Maintained by Intraflagellar Transport. Current Biology, 2020, 30, 4299-4306.e5.	3.9	25
6	CiliaCarta: An integrated and validated compendium of ciliary genes. PLoS ONE, 2019, 14, e0216705.	2.5	104
7	EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling. ELife, 2019, 8, .	6.0	10
8	CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function. Cell Reports, 2018, 22, 885-894.	6.4	48
9	Role for intraflagellar transport in building a functional transition zone. EMBO Reports, 2018, 19, .	4.5	35
10	Biallelic Mutations in LRRC56, Encoding a Protein Associated with Intraflagellar Transport, Cause Mucociliary Clearance and Laterality Defects. American Journal of Human Genetics, 2018, 103, 727-739.	6.2	49
11	Gates for soluble and membrane proteins, and two trafficking systems (IFT and LIFT), establish a dynamic ciliary signaling compartment. Current Opinion in Cell Biology, 2017, 47, 83-91.	5.4	70
12	Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes. Journal of Medical Genetics, 2017, 54, 371-380.	3.2	85
13	Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 2017, 18, 533-547.	37.0	1,135
14	MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biology, 2016, 14, e1002416.	5.6	98
15	Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT). PLoS Genetics, 2016, 12, e1006235.	3.5	22
16	Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport. PLoS Genetics, 2016, 12, e1006469.	3.5	56
17	PACRG, a protein linked to ciliary motility, mediates cellular signaling. Molecular Biology of the Cell, 2016, 27, 2133-2144.	2.1	16
18	Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (<scp>CIZE</scp>) that compartmentalises ciliary signalling proteins and controls <scp>PIP</scp> ₂ ciliary abundance. EMBO Journal, 2015, 34, 2537-2556.	7.8	115

#	Article	IF	CITATIONS
19	Shared and Distinct Mechanisms of Compartmentalized and Cytosolic Ciliogenesis. Current Biology, 2015, 25, R1143-R1150.	3.9	68
20	TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. Journal of Cell Biology, 2015, 209, 129-142.	5.2	95
21	Ciliopathy proteins establish a bipartite signaling compartment in a <i>C. elegans</i> thermosensory neuron. Development (Cambridge), 2015, 142, e0107-e0107.	2.5	1
22	Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genetics, 2015, 11, e1005627.	3.5	71
23	Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. Journal of Cell Science, 2014, 127, 5317-30.	2.0	37
24	A truncating mutation of Alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Developmental Neurobiology, 2013, 73, 1-13.	3.0	60
25	The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nature Cell Biology, 2013, 15, 1387-1397.	10.3	180
26	Striated Rootlet and Nonfilamentous Forms of Rootletin Maintain Ciliary Function. Current Biology, 2013, 23, 2016-2022.	3.9	50
27	Defects in the IFT-B Component IFT172 Cause Jeune and Mainzer-Saldino Syndromes in Humans. American Journal of Human Genetics, 2013, 93, 915-925.	6.2	196
28	Identification of 526 Conserved Metazoan Genetic Innovations Exposes a New Role for Cofactor E-like in Neuronal Microtubule Homeostasis. PLoS Genetics, 2013, 9, e1003804.	3.5	16
29	Ciliogenesis in <i>Caenorhabditis elegans</i> requires genetic interactions between ciliary middle segment localized NPHP-2 (inversin) and transition zone-associated proteins. Journal of Cell Science, 2012, 125, 2592-603.	2.0	40
30	The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Reports, 2012, 13, 608-618.	4.5	420
31	Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Developmental Biology, 2011, 357, 235-247.	2.0	65
32	TMEM237 Is Mutated in Individuals with a Joubert Syndrome Related Disorder and Expands the Role of the TMEM Family at the Ciliary Transition Zone. American Journal of Human Genetics, 2011, 89, 713-730.	6.2	178
33	MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. Journal of Cell Biology, 2011, 192, 1023-1041.	5.2	423
34	Mutations in a Guanylate Cyclase GCY-35/GCY-36 Modify Bardet-Biedl Syndrome–Associated Phenotypes in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002335.	3.5	19
35	cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends in Cell Biology, 2010, 20, 435-444.	7.9	65
36	Quality control of cytoskeletal proteins and human disease. Trends in Biochemical Sciences, 2010, 35, 288-297.	7.5	92

3

#	Article	IF	CITATIONS
37	Bardet-Biedl Syndrome-associated Small GTPase ARL6 (BBS3) Functions at or near the Ciliary Gate and Modulates Wnt Signaling. Journal of Biological Chemistry, 2010, 285, 16218-16230.	3.4	100
38	Sensorium: The Original Raison D'etre of the Motile Cilium?. Journal of Molecular Cell Biology, 2010, 2, 65-67.	3.3	16
39	Tubulin acetyltransferase discovered: Ciliary role in the ancestral eukaryote expanded to neurons in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21238-21239.	7.1	7
40	Localization of a Guanylyl Cyclase to Chemosensory Cilia Requires the Novel Ciliary MYND Domain Protein DAF-25. PLoS Genetics, 2010, 6, e1001199.	3.5	21
41	Functional Genomics of Intraflagellar Transport-Associated Proteins in C. elegans. Methods in Cell Biology, 2009, 93, 267-304.	1.1	12
42	Functional interactions between the ciliopathy-associated Meckel syndrome 1 (MKS1) protein and two novel MKS1-related (MKSR) proteins. Journal of Cell Science, 2009, 122, 611-624.	2.0	71
43	Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends in Cell Biology, 2009, 19, 306-316.	7.9	146
44	Signaling Proteins that Regulate NaCL Chemotaxis Responses Modulate Longevity in <i>C. elegans</i> . Annals of the New York Academy of Sciences, 2009, 1170, 682-687.	3.8	2
45	The interaction network of the chaperonin CCT. EMBO Journal, 2008, 27, 1827-1839.	7.8	182
46	Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Developmental Biology, 2008, 313, 320-334.	2.0	66
47	An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes. PLoS Genetics, 2008, 4, e1000044.	3.5	48
48	Loss of Bardet–Biedl syndrome proteins causes defects in peripheral sensory innervation and function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17524-17529.	7.1	71
49	Sensory Ciliogenesis in Caenorhabditis elegans: Assignment of IFT Components into Distinct Modules Based on Transport and Phenotypic Profiles. Molecular Biology of the Cell, 2007, 18, 1554-1569.	2.1	134
50	Functional Interaction between Phosducin-like Protein 2 and Cytosolic Chaperonin Is Essential for Cytoskeletal Protein Function and Cell Cycle Progression. Molecular Biology of the Cell, 2007, 18, 2336-2345.	2.1	50
51	Taking Vesicular Transport to the Cilium. Cell, 2007, 129, 1041-1043.	28.9	43
52	Divergent Substrate-Binding Mechanisms Reveal an Evolutionary Specialization of Eukaryotic Prefoldin Compared to Its Archaeal Counterpart. Structure, 2007, 15, 101-110.	3.3	55
53	The sensory cilia of Caenorhabditis elegans_Revised. WormBook, 2007, , 1-22.	5.3	131
54	ldentification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics. Genome Biology, 2006, 7, R126.	9.6	86

#	Article	IF	CITATIONS
55	The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681.	21.4	535
56	Convergent evolution of clamp-like binding sites in diverse chaperones. Nature Structural and Molecular Biology, 2006, 13, 865-870.	8.2	62
57	Piecing together a ciliome. Trends in Genetics, 2006, 22, 491-500.	6.7	191
58	The WD Repeat-containing Protein IFTA-1 Is Required for Retrograde Intraflagellar Transport. Molecular Biology of the Cell, 2006, 17, 5053-5062.	2.1	94
59	Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. Journal of Cell Biology, 2006, 174, 1035-1045.	5.2	178
60	PhLP3 Modulates CCT-mediated Actin and Tubulin Folding via Ternary Complexes with Substrates. Journal of Biological Chemistry, 2006, 281, 7012-7021.	3.4	69
61	Caenorhabditis elegans DYF-2, an Orthologue of Human WDR19, Is a Component of the Intraflagellar Transport Machinery in Sensory Cilia. Molecular Biology of the Cell, 2006, 17, 4801-4811.	2.1	68
62	Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genetics, 2005, 37, 1135-1140.	21.4	536
63	Functional coordination of intraflagellar transport motors. Nature, 2005, 436, 583-587.	27.8	355
64	Functional Genomics of the Cilium, a Sensory Organelle. Current Biology, 2005, 15, 935-941.	3.9	245
65	Analysis of xbx genes in C. elegans. Development (Cambridge), 2005, 132, 1923-1934.	2.5	175
66	MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. Journal of Cell Science, 2005, 118, 1007-1020.	2.0	166
67	Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4367-4372.	7.1	57
68	Loss of <i>C. elegans</i> BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes and Development, 2004, 18, 1630-1642.	5.9	318
69	Kinetics and Binding Sites for Interaction of the Prefoldin with a Group II Chaperonin. Journal of Biological Chemistry, 2004, 279, 31788-31795.	3.4	53
70	The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nature Genetics, 2004, 36, 462-470.	21.4	372
71	Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nature Genetics, 2004, 36, 989-993.	21.4	313
72	Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene. Cell, 2004, 117, 541-552.	28.9	721

#	Article	IF	CITATIONS
73	Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature, 2003, 425, 628-633.	27.8	607
74	Getting a grip on nonâ€native proteins. EMBO Reports, 2003, 4, 565-570.	4.5	39
75	Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Human Molecular Genetics, 2003, 12, 1651-1659.	2.9	194
76	Protein folding and molecular chaperones in Archaea. Advances in Applied Microbiology, 2001, 50, 219-277.	2.4	17
77	Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT. Current Biology, 2000, 10, R260-R264.	3.9	117
78	Structure of the Molecular Chaperone Prefoldin. Cell, 2000, 103, 621-632.	28.9	298
79	Caenorhabditis eleganssmall heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Letters, 1998, 433, 228-232.	2.8	72
80	Structure-Function Studies on Small Heat Shock Protein Oligomeric Assembly and Interaction with Unfolded Polypeptides. Journal of Biological Chemistry, 1997, 272, 24646-24656.	3.4	190
81	Unique Structural Features of a Novel Class of Small Heat Shock Proteins. Journal of Biological Chemistry, 1997, 272, 12847-12853.	3.4	88
82	Subunit Characterization of theCaenorhabditis elegansChaperonin Containing TCP-1 and Expression Pattern of the Gene Encoding CCT-1. Biochemical and Biophysical Research Communications, 1997, 241, 687-692.	2.1	16
83	Molecular analysis of Caenorhabditis elegans tcp-1, a gene encoding a chaperonin protein. Gene, 1995, 156, 241-246.	2.2	13