Dmitry Yu Murzin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7558123/publications.pdf

Version: 2024-02-01

806 papers 23,330 citations

68 h-index 23533 111 g-index

834 all docs

834 docs citations

times ranked

834

15672 citing authors

#	Article	IF	CITATIONS
1	One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines. Catalysis Reviews - Science and Engineering, 2023, 65, 501-568.	12.9	10
2	Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catalysis Letters, 2023, 153, 41-53.	2.6	5
3	Preparation of \hat{I}^3 -Al2O3/ $\hat{I}\pm$ -Al2O3 ceramic foams as catalyst carriers via the replica technique. Catalysis Today, 2022, 383, 64-73.	4.4	19
4	Pd Nanoparticles Stabilized on the Cross-Linked Melamine-Based SBA-15 as a Catalyst for the Mizoroki–Heck Reaction. Catalysis Letters, 2022, 152, 991-1002.	2.6	3
5	Transformations of citral over bifunctional Ru-H-Y-80 extrudates in a continuous reactor. Chemical Engineering Journal, 2022, 429, 132190.	12.7	7
6	Clays catalyzed cascade Prins and Prins-Friedel-Crafts reactions for synthesis of terpenoid-derived polycyclic compounds. Applied Catalysis A: General, 2022, 629, 118395.	4.3	9
7	Effect of protective bed composition on deactivation of a hydrotreating catalyst. Journal of Chemical Technology and Biotechnology, 2022, 97, 771-778.	3.2	1
8	Catalytic decomposition of formic acid in a fixed bed reactor – an experimental and modelling study. Catalysis Today, 2022, 387, 128-139.	4.4	10
9	CuZSM-5@HMS composite as an efficient micro-mesoporous catalyst for conversion of sugars into levulinic acid. Catalysis Today, 2022, 390-391, 146-161.	4.4	8
10	Synthesis of Florol via Prins cyclization over heterogeneous catalysts. Journal of Catalysis, 2022, 405, 288-302.	6.2	3
11	Citral-to-Menthol Transformations in a Continuous Reactor over Ni/Mesoporous Aluminosilicate Extrudates Containing a Sepiolite Clay Binder. Organic Process Research and Development, 2022, 26, 387-403.	2.7	11
12	Synergy of Acidity and Morphology of Micro-/Mesoporous Materials in the Solid-Acid Alkylation of Toluene with 1-Decene. Industrial & Engineering Chemistry Research, 2022, 61, 1994-2009.	3.7	11
13	Aqueous phase reforming of birch and pine hemicellulose hydrolysates. Bioresource Technology, 2022, 348, 126809.	9.6	7
14	Diffusion measurements of hydrocarbons in H-MCM-41 extrudates with pulsed-field gradient nuclear magnetic resonance spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 8269-8278.	2.8	3
15	Solid Foam Ru/C Catalysts for Sugar Hydrogenation to Sugar Alcohols─Preparation, Characterization, Activity, and Selectivity. Industrial & Engineering Chemistry Research, 2022, 61, 2734-2747.	3.7	9
16	Continuous synthesis of menthol from citronellal and citral over Ni-beta-zeolite-sepiolite composite catalyst. Applied Catalysis A: General, 2022, 636, 118586.	4.3	7
17	Reaction mechanism and intrinsic kinetics of sugar hydrogenation to sugar alcohols on solid foam Ru/C catalysts – From arabinose and galactose to arabitol and galactitol. Chemical Engineering Science, 2022, 254, 117627.	3.8	5
18	Furfural Oxidation with Hydrogen Peroxide Over ZSM-5 Based Micro-Mesoporous Aluminosilicates. Catalysis Letters, 2022, 152, 2920-2932.	2.6	4

#	Article	IF	Citations
19	Hierarchical Beta Zeolites As Catalysts in \hat{l}_{\pm} -Pinene Oxide Isomerization. ACS Sustainable Chemistry and Engineering, 2022, 10, 6642-6656.	6.7	12
20	Cooperative catalytic nanokinetics. Chemical Engineering Science, 2022, 256, 117684.	3.8	1
21	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	5.1	7
22	Catalytic conversion of glucose to methyl levulinate over metal-modified Beta zeolites. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 1971-1986.	1.7	2
23	Structure effect of modified biochar in Ru/C catalysts for sugar mixture hydrogenation. Biomass and Bioenergy, 2022, 163, 106504.	5.7	8
24	Liquid-phase oxidation of betulin over supported Ag NPs catalysts: Kinetic regularities, catalyst deactivation and reactivation. Molecular Catalysis, 2022, 528, 112461.	2.0	3
25	Glucose transformations over a mechanical mixture of ZnO and Ru/C catalysts: Product distribution, thermodynamics and kinetics. Chemical Engineering Journal, 2021, 405, 126945.	12.7	10
26	Experimental and theoretical analysis of particle size effect in liquid-phase hydrogenation of diphenylacetylene. Chemical Engineering Journal, 2021, 404, 126409.	12.7	16
27	Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. Journal of Catalysis, 2021, 394, 193-205.	6.2	22
28	Catalytic oxidative transformation of betulin to its valuable oxo-derivatives over gold supported catalysts: Effect of support nature. Catalysis Today, 2021, 367, 95-110.	4.4	8
29	Application of microreactor technology to dehydration of bio-ethanol. Chemical Engineering Science, 2021, 229, 116030.	3.8	14
30	Solvent-free synthesis of tetrahydropyran alcohols over acid-modified clays. Molecular Catalysis, 2021, 499, 111306.	2.0	3
31	Oxidation of glucose and arabinose mixtures over Au/Al2O3. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 59-72.	1.7	9
32	Chemoselective heterogeneous iridium catalyzed hydrogenation of cinnamalaniline. Catalysis Science and Technology, 2021, 11, 1481-1496.	4.1	1
33	Enhanced H2 production in the aqueous-phase reforming of maltose by feedstock pre-hydrogenation. Applied Catalysis B: Environmental, 2021, 281, 119469.	20.2	21
34	Catalytic Hydrogenation/Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Ðimethylfuran. ChemSusChem, 2021, 14, 150-168.	6.8	32
35	Catalytic transformations of citral in a continuous flow over bifunctional Ru-MCM-41 extrudates. Catalysis Science and Technology, 2021, 11, 2873-2884.	4.1	10
36	Selectivity of the Lindlar catalyst in alkyne semi-hydrogenation: a direct liquid-phase adsorption study. Catalysis Science and Technology, 2021, 11, 6205-6216.	4.1	12

#	Article	IF	CITATIONS
37	Deactivation and regeneration of Ptâ€modified zeolite Beta–Bindzil extrudates in n â€hexane hydroisomerization. Journal of Chemical Technology and Biotechnology, 2021, 96, 1645-1655.	3.2	4
38	Study of the Product Distribution in the Epoxidation of Propylene over TS-1 Catalyst in a Trickle-Bed Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 2430-2438.	3.7	15
39	Biogas Reforming over Al-Co Catalyst Prepared by Solution Combustion Synthesis Method. Catalysts, 2021, 11, 274.	3.5	4
40	Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials, 2021, 11, 469.	4.1	3
41	Parameter estimation in kinetic models of complex heterogeneous catalytic reactions using Bayesian statistics. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 1-15.	1.7	14
42	Graphitic Carbon Nitride as a Sustainable Catalyst for Selective Ethanol Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 5128-5137.	6.7	13
43	Catalytic activity of gold nanoparticles deposited on N-doped carbon-based supports in oxidation of glucose and arabinose mixtures. Research on Chemical Intermediates, 2021, 47, 2573.	2.7	6
44	Diffusion Measurements of Hydrocarbons in Zeolites with Pulse-Field Gradient Nuclear Magnetic Resonance Spectroscopy. Russian Journal of Physical Chemistry A, 2021, 95, 547-557.	0.6	5
45	Mono―and Bimetallic NiⰒCo Catalysts in Dry Reforming of Methane. ChemistrySelect, 2021, 6, 3424-3434.	1.5	19
46	Modelling of kinetics, mass transfer and flow pattern on open foam structures in tubular reactors: Hydrogenation of arabinose and galactose on ruthenium catalyst. Chemical Engineering Science, 2021, 233, 116385.	3.8	7
47	Kinetics of liquid-phase diphenylacetylene hydrogenation on "single-atom alloy―Pd-Ag catalyst: Experimental study and kinetic analysis. Molecular Catalysis, 2021, 506, 111550.	2.0	9
48	Application of semibatch technology on the investigation of homogeneously catalyzed consecutive and parallel-consecutive liquid-phase reactions: Kinetic measurements and modelling. Chemical Engineering Science, 2021, 233, 116397.	3.8	0
49	Influence of the initial state of ZrO2 on genesis, activity and stability of Ni/ZrO2 catalysts for steam reforming of glycerol. Applied Catalysis A: General, 2021, 616, 118098.	4.3	15
50	Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural over Supported Bimetallic Iridium-Based Catalysts. Journal of Physical Chemistry C, 2021, 125, 9657-9678.	3.1	10
51	Catalytic activity of hierarchical beta zeolites in the Prins cyclization of (â^')-isopulegol with acetone. Applied Catalysis A: General, 2021, 618, 118131.	4.3	9
52	Ultrasound irradiation as an effective tool in synthesis of the slag-based catalysts for carboxymethylation. Ultrasonics Sonochemistry, 2021, 73, 105503.	8.2	5
53	Catalytic synthesis of terpenoid-derived hexahydro-2H-chromenes with analgesic activity over halloysite nanotubes. Applied Catalysis A: General, 2021, 618, 118144.	4.3	7
54	Effect of metal particle shape on hydrogen assisted reactions. Applied Catalysis A: General, 2021, 618, 118140.	4.3	9

#	Article	IF	Citations
55	Continuous Liquid-Phase Epoxidation of Ethylene with Hydrogen Peroxide on a Titanium-Silicate Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 9429-9436.	3.7	19
56	Carboxymethylation of cinnamylalcohol with dimethyl carbonate over the slag-based catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 601-630.	1.7	1
57	Coordination-Dependent Kinetics in the Catalysis of Gold Nanoclusters. ACS Catalysis, 2021, 11, 9073-9085.	11.2	8
58	Bayesian Statistics to Elucidate the Kinetics of \hat{I}^3 -Valerolactone from $\langle i \rangle n \langle i \rangle$ -Butyl Levulinate Hydrogenation over Ru/C. Industrial & Engineering Chemistry Research, 2021, 60, 11725-11736.	3.7	18
59	Reactor Selection for Upgrading Hemicelluloses: Conventional and Miniaturised Reactors for Hydrogenations. Processes, 2021, 9, 1558.	2.8	1
60	Kinetics of cluster shape sensitive heterogeneous catalytic reactions. Chemical Engineering Journal, 2021, 425, 130642.	12.7	5
61	Hydroconversion of fatty acids and vegetable oils for production of jet fuels. Fuel, 2021, 306, 121673.	6.4	30
62	Hydrodeoxygenation of Isoeugenol over Carbon-Supported Pt and Ptâ€"Re Catalysts for Production of Renewable Jet Fuel. Energy & Dels, 2021, 35, 17755-17768.	5.1	13
63	Interaction of Intrinsic Kinetics, Catalyst Durability and Internal Mass Transfer in the Oxidation of Sugar Mixtures on Gold Nanoparticle Extrudates. Industrial & Engineering Chemistry Research, 2021, 60, 6483-6500.	3.7	3
64	The physicochemical and catalytic properties of clay extrudates in cyclization of citronellal. Applied Catalysis A: General, 2021, , 118426.	4.3	11
65	Liquid-Phase Hydrogenation of 1-Phenyl-1-propyne on the Pd1Ag3/Al2O3 Single-Atom Alloy Catalyst: Kinetic Modeling and the Reaction Mechanism. Nanomaterials, 2021, 11, 3286.	4.1	9
66	Transformation of industrial steel slag with different structure-modifying agents for synthesis of catalysts. Catalysis Today, 2020, 355, 768-780.	4.4	5
67	Introduction to a New Open Access Journal by MDPI: Reactions. Reactions, 2020, 1, 1-2.	2.1	0
68	Kinetic modeling of isobutane dehydrogenation over Ga2O3/Al2O3 catalyst. Chemical Engineering Journal, 2020, 381, 122741.	12.7	14
69	Kinetic modelling of heterogeneous catalytic oxidation of furfural with hydrogen peroxide to succinic acid. Chemical Engineering Journal, 2020, 382, 122811.	12.7	12
70	Influence of Structure Sensitivity on Apparent Activation Energy of Parallel Heterogeneous Catalytic Reactions. Catalysis Letters, 2020, 150, 1561-1570.	2.6	2
71	Metal catalysts supported on biochars: Part I synthesis and characterization. Applied Catalysis B: Environmental, 2020, 268, 118423.	20.2	43
72	Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour. Applied Catalysis B: Environmental, 2020, 268, 118425.	20.2	61

#	Article	IF	CITATIONS
73	A Simulation Case Study for Bio-based Hydrogen Production from Hardwood Hemicellulose. Computer Aided Chemical Engineering, 2020, 48, 1735-1740.	0.5	O
74	Requiem for the Rate-Determining Step in Complex Heterogeneous Catalytic Reactions?. Reactions, 2020, 1, 37-46.	2.1	4
75	Heterogeneous Catalytic Synthesis of Methyl Lactate and Lactic Acid from Sugars and Their Derivatives. ChemSusChem, 2020, 13, 4833-4855.	6.8	21
76	Cascade transformations of $(\hat{A}\pm)$ -citronellal to menthol over extruded Ru-MCM-41 catalysts in a continuous reactor. Catalysis Science and Technology, 2020, 10, 8108-8119.	4.1	12
77	Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane. Catalysts, 2020, 10, 1358.	3.5	42
78	On the optimum catalyst for structure sensitive heterogeneous catalytic reactions. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 5-17.	1.7	3
79	Menthylamine synthesis via gold-catalyzed hydrogenation of menthone oxime. Applied Catalysis A: General, 2020, 605, 117799.	4.3	2
80	Pt- and K-promoted supported gallia as a highly stable alternative catalyst for isobutane dehydrogenation. Catalysis Science and Technology, 2020, 10, 7719-7723.	4.1	3
81	Hydrogenation of crude and purified <scp>d</scp> -glucosone generated by enzymatic oxidation of <scp>d</scp> -glucose. RSC Advances, 2020, 10, 30476-30480.	3.6	2
82	A Robust Method for the Estimation of Kinetic Parameters for Systems Including Slow and Rapid Reactions—From Differential-Algebraic Model to Differential Model. Processes, 2020, 8, 1552.	2.8	1
83	Heterogeneously Catalyzed \hat{I}^3 -Valerolactone Hydrogenation into 1,4-Pentanediol in Milder Reaction Conditions. Reactions, 2020, 1, 54-71.	2.1	13
84	Synthesis of isobenzofuran derivatives from renewable 2-carene over halloysite nanotubes. Molecular Catalysis, 2020, 490, 110974.	2.0	7
85	Aqueous phase reforming of alcohols over a bimetallic Pt-Pd catalyst in the presence of formic acid. Chemical Engineering Journal, 2020, 398, 125541.	12.7	14
86	Physical and Chemical Characteristics and Functional Properties of Carbon Nitride Materials Obtained by Template Synthesis. Theoretical and Experimental Chemistry, 2020, 55, 392-397.	0.8	1
87	Heterogeneous Catalytic Oxidation of Furfural with Hydrogen Peroxide over Sulfated Zirconia. Industrial & Engineering Chemistry Research, 2020, 59, 13516-13527.	3.7	24
88	Continuous Hydrogenation of Monomeric Sugars and Binary Sugar Mixtures on a Ruthenium Catalyst Supported by Carbon-Coated Open-Cell Aluminum Foam. Industrial & Engineering Chemistry Research, 2020, 59, 13450-13459.	3.7	13
89	Hydrocracking of hexadecane to jet fuel components over hierarchical Ru-modified faujasite zeolite. Fuel, 2020, 278, 118193.	6.4	20
90	Aqueous phase reforming of xylitol and xylose in the presence of formic acid. Catalysis Science and Technology, 2020, 10, 5245-5255.	4.1	7

#	Article	IF	Citations
91	Stereoselectivity Inversion by Water Addition in the â°'SO 3 Hâ€catalyzed Tandem Prinsâ€Ritter Reaction for Synthesis of 4â€amidotetrahydropyran Derivatives. ChemCatChem, 2020, 12, 2605-2609.	3.7	11
92	2. Engineering catalysts. , 2020, , 49-228.		0
93	3. Engineering reactions. , 2020, , 229-390.		0
94	Catalytic synthesis of bioactive 2H-chromene alcohols from (â^')-isopulegol and acetone on sulfonated clays. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 627-644.	1.7	9
95	Synthesis and Characterization of Palladium Supported Amino Functionalized Magnetic-MOF-MIL-101 as an Efficient and Recoverable Catalyst for Mizoroki–Heck Cross-Coupling. Catalysis Letters, 2020, 150, 2617-2629.	2.6	17
96	4. Engineering technology. , 2020, , 391-532.		0
97	Monoterpenoid Oximes Hydrogenation Over Platinum Catalysts. Topics in Catalysis, 2020, 63, 187-195.	2.8	3
98	Synthesis and physico-chemical characterization of Beta zeolite catalysts: Evaluation of catalytic properties in Prins cyclization of (â^')-isopulegol. Microporous and Mesoporous Materials, 2020, 302, 110236.	4.4	5
99	Mesolevel Bifunctional Catalysis. Kinetics and Catalysis, 2020, 61, 80-92.	1.0	10
100	Technoâ€Economic Analysis for Production ofÂ <i>L</i> à€Arabitol from <i>L</i> â€Arabinose. Chemical Engineering and Technology, 2020, 43, 1260-1267.	1.5	4
101	Biohydrogen from dilute side streams - Influence of reaction conditions on the conversion and selectivity in aqueous phase reforming of xylitol. Biomass and Bioenergy, 2020, 138, 105590.	5 . 7	10
102	Engineering Catalysis., 2020,,.		11
103	A Scientometric Analysis of Catalysis Research. Journal of Scientometric Research, 2020, 9, 335-343.	0.6	5
104	Comparison of Isobutane/n-Butenes Alkylation over Y-Zeolite Catalyst in CSTR, Fixed Bed and Circulating Flow Reactors. Review Journal of Chemistry, 2020, 10, 58-72.	1.0	4
105	Preparation of chiral izobenzofuranes based on 3-carene in the presence of halloysite nanocatalysts., 2020, 64, 426-430.	0.1	0
106	Editorial: Aqueous-Phase Catalytic Conversions of Renewable Feedstocks for Sustainable Biorefineries. Frontiers in Chemistry, 2020, 8, 629578.	3.6	3
107	CATALYTIC CONVERSION OF BIOGAS INTO SYNTHESIS GAS ON Ni, Co AND Ni-Co CATALYSTS. Series Chemistry and Technology, 2020, 5, 14-20.	0.1	0
108	High purity fructose from inulin with heterogeneous catalysis–Âfrom batch to continuous operation. Journal of Chemical Technology and Biotechnology, 2019, 94, 418-425.	3.2	7

#	Article	IF	Citations
109	Influence of the specific surface area and silver crystallite size of mesoporous Ag/SrTiO 3 on the selectivity enhancement of ethylene oxide production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3839-3849.	3.2	4
110	Hydrodeoxygenation of Isoeugenol over Ni- and Co-Supported Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 14545-14560.	6.7	33
111	Reductive Amination of Ketones with Benzylamine Over Gold Supported on Different Oxides. Catalysis Letters, 2019, 149, 3432-3446.	2.6	10
112	Molybdenum Nitrides, Carbides and Phosphides as Highly Efficient Catalysts for the (hydro)Deoxygenation Reaction. ChemistrySelect, 2019, 4, 8453-8459.	1.5	20
113	Microreactor coating with Au/Al2O3 catalyst for gas-phase partial oxidation of ethanol: Physico-chemical characterization and evaluation of catalytic properties. Chemical Engineering Journal, 2019, 378, 122179.	12.7	9
114	Effect of Binders on the Physicochemical and Catalytic Properties of Extrudate-Shaped Beta Zeolite Catalysts for Cyclization of Citronellal. Organic Process Research and Development, 2019, 23, 2456-2463.	2.7	28
115	Prins cyclisation of ($\hat{a}\in$ ")-isopulegol with benzaldehyde over ZSM-5 based micro-mesoporous catalysts for production of pharmaceuticals. Chinese Journal of Catalysis, 2019, 40, 1713-1720.	14.0	10
116	Clay nanotubes catalyzed solvent-free synthesis of octahydro-2H-chromenols with pharmaceutical potential from (-)-isopulegol and ketones. Journal of Catalysis, 2019, 380, 145-152.	6.2	19
117	Immobilized chiral rhodium nanoparticles stabilized by chiral P-ligands as efficient catalysts for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Molecular Catalysis, 2019, 477, 110551.	2.0	0
118	One-Pot Myrtenol Amination over Au, Au–Pd and Pd Nanoparticles Supported on Alumina. Catalysis Letters, 2019, 149, 3454-3464.	2.6	2
119	On the Scientific Heritage of Mikhail Isaakovich Temkin. Kinetics and Catalysis, 2019, 60, 388-397.	1.0	7
120	Synthesis and Physicochemical Characterization of Shaped Catalysts of \hat{l}^2 and Y Zeolites for Cyclization of Citronellal. Industrial & Engineering Chemistry Research, 2019, 58, 18084-18096.	3.7	31
121	Prins cyclization of (-)-isopulegol with benzaldehyde for production of chromenols over organosulfonic clays. Molecular Catalysis, 2019, 478, 110569.	2.0	7
122	Hexadecane hydrocracking for production of jet fuels from renewable diesel over proton and metal modified H-Beta zeolites. Molecular Catalysis, 2019, 476, 110515.	2.0	17
123	Preparation of Betulone Via Betulin Oxidation Over Ru Nanoparticles Deposited on Graphitic Carbon Nitride. Catalysis Letters, 2019, 149, 723-732.	2.6	9
124	Highly selective Prins reaction over acid-modified halloysite nanotubes for synthesis of isopulegol-derived 2H-chromene compounds. Journal of Catalysis, 2019, 374, 360-377.	6.2	26
125	Kinetic and Thermodynamic Analysis of Guaiacol Hydrodeoxygenation. Catalysis Letters, 2019, 149, 2453-2467.	2.6	32
126	Effect of the Preparation of Pt-Modified Zeolite Beta-Bentonite Extrudates on Their Catalytic Behavior in n-Hexane Hydroisomerization. Industrial & Engineering Chemistry Research, 2019, 58, 10875-10885.	3.7	38

#	Article	IF	Citations
127	Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts. Green Chemistry, 2019, 21, 3370-3382.	9.0	11
128	Hydrogen production from sucrose via aqueous-phase reforming. International Journal of Hydrogen Energy, 2019, 44, 14605-14623.	7.1	15
129	Experimental studies and kinetic regularities of isobutane dehydrogenation over Ga2O3/Al2O3. Chemical Engineering Journal, 2019, 372, 1194-1204.	12.7	10
130	Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Applied Catalysis A: General, 2019, 580, 1-10.	4.3	34
131	Synthesis and Characterization of Novel Catalytic Materials Using Industrial Slag: Influence of Alkaline Pretreatment, Synthesis Time and Temperature. Topics in Catalysis, 2019, 62, 738-751.	2.8	9
132	Catalytic oxidation kinetics of arabinose on supported gold nanoparticles. Chemical Engineering Journal, 2019, 370, 952-961.	12.7	14
133	Kinetics of ceria-catalysed ethene oxychlorination. Journal of Catalysis, 2019, 372, 287-298.	6.2	5
134	Pd Supported IRMOF-3: Heterogeneous, Efficient and Reusable Catalyst for Heck Reaction. Catalysis Letters, 2019, 149, 1941-1951.	2.6	29
135	On Apparent Activation Energy of Structure Sensitive Heterogeneous Catalytic Reactions. Catalysis Letters, 2019, 149, 1455-1463.	2.6	17
136	Aldol Condensation of Cyclopentanone with Valeraldehyde Over Metal Oxides. Catalysis Letters, 2019, 149, 1383-1395.	2.6	14
137	Molecular insight on unusually high specific hydrogen adsorption over silicon carbide. International Journal of Hydrogen Energy, 2019, 44, 6074-6085.	7.1	6
138	Mesoporous carbon and microporous zeolite supported Ru catalysts for selective levulinic acid hydrogenation into \hat{l}^3 -valerolactone. Catalysis for Sustainable Energy, 2019, 6, 38-50.	0.7	7
139	Synthesis of menthol from citronellal over supported Ru- and Pt-catalysts in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 2156-2169.	3.7	18
140	Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Applied Catalysis B: Environmental, 2019, 241, 270-283.	20.2	64
141	Hydrodeoxygenation of phenolic model compounds over zirconia supported Ir and Ni-catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 737-759.	1.7	30
142	Isomerization of α-Pinene Oxide: Solvent Effects, Kinetics and Thermodynamics. Catalysis Letters, 2019, 149, 203-214.	2.6	14
143	Ketonization kinetics of stearic acid. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 601-610.	1.7	6
144	Particle size effect in liquid-phase hydrogenation of phenylacetylene over Pd catalysts: Experimental data and theoretical analysis. Chemical Engineering Journal, 2019, 358, 520-530.	12.7	59

#	Article	IF	Citations
145	Selectivity Analysis for Networks Comprising Consecutive Reactions of Second and First Order. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	2
146	Influence of the support of copper catalysts on activity and 1,2-dichloroethane selectivity in ethylene oxychlorination. Applied Catalysis A: General, 2018, 556, 41-51.	4.3	17
147	Catalytic isomerization of \hat{l}_{\pm} -pinene oxide in the presence of acid-modified clays. Molecular Catalysis, 2018, 448, 18-29.	2.0	28
148	One-pot monoterpene alcohol amination over Au/ZrO2 catalyst: Effect of the substrate structure. Journal of Catalysis, 2018, 360, 127-134.	6.2	22
149	Process design and techno-economical analysis of hydrogen production by aqueous phase reforming of sorbitol. Chemical Engineering Research and Design, 2018, 134, 104-116.	5.6	40
150	Physico-chemical properties of MoO3/ZrO2 catalysts prepared by dry mixing for isobutane alkylation and butene transformations. Applied Catalysis B: Environmental, 2018, 230, 246-259.	20.2	25
151	Sibunit-Supported Mono- and Bimetallic Catalysts Used in Aqueous-Phase Reforming of Xylitol. Industrial & Department of the State of State	3.7	35
152	Ethylene epoxidation over supported silver catalysts – influence of catalyst pretreatment on conversion and selectivity. Journal of Chemical Technology and Biotechnology, 2018, 93, 1549-1557.	3.2	13
153	The Impact of Salts Formed by the Neutralisation of (Ligno)Cellulose Hydrolysates on the Hydrogenation of Sugars. ChemCatChem, 2018, 10, 2409-2416.	3.7	4
154	Fluidized-Bed Isobutane Dehydrogenation over Alumina-Supported Ga ₂ O ₃ and Ga ₂ O ₃ –Cr ₂ O ₃ Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 927-938.	3.7	19
155	Racemization of Secondaryâ€Amineâ€Containing Natural Products Using Heterogeneous Metal Catalysts. ChemCatChem, 2018, 10, 2893-2899.	3.7	4
156	Aqueous-phase reforming of alcohols with three carbon atoms on carbon-supported Pt. Catalysis Today, 2018, 301, 78-89.	4.4	44
157	Catalytic dehydrogenation of ethanol into acetaldehyde and isobutanol using mono- and multicomponent copper catalysts. Comptes Rendus Chimie, 2018, 21, 194-209.	0.5	39
158	High purity fructose from inulin with heterogeneous catalysis – kinetics and modelling. Journal of Chemical Technology and Biotechnology, 2018, 93, 224-232.	3.2	11
159	A structure sensitivity approach to temperature programmed desorption. Applied Catalysis A: General, 2018, 550, 48-56.	4.3	8
160	Kinetic modeling of fatty acid methyl esters and triglycerides hydrodeoxygenation over nickel and palladium catalysts. Chemical Engineering Journal, 2018, 334, 2201-2207.	12.7	40
161	Synthesis of Co/Al2O3 Catalysts and Their Application in Heptane Steam Reforming. Catalysis Letters, 2018, 148, 512-522.	2.6	1
162	Morphological features of porous silicon carbide obtained via a carbothermal method. International Journal of Applied Ceramic Technology, 2018, 15, 36-41.	2.1	7

#	Article	IF	Citations
163	Catalytic myrtenol amination over gold, supported on alumina doped with ceria and zirconia. Catalysis for Sustainable Energy, 2018, 5, 49-58.	0.7	2
164	Synthesis and physicochemical characterization of beta zeolite–bentonite composite materials for shaped catalysts. Catalysis Science and Technology, 2018, 8, 6150-6162.	4.1	31
165	Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. Catalysts, 2018, 8, 534.	3.5	51
166	Synthesis and Characterization Ru–C/SiO2 Aerogel Catalysts for Sugar Hydrogenation Reactions. Catalysis Letters, 2018, 148, 3514-3523.	2.6	13
167	Hydrodeoxygenation of Isoeugenol over Alumina-Supported Ir, Pt, and Re Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16205-16218.	6.7	31
168	Catalytic Conversion of Hexanol to 2-Butyl-octanol Through the Guerbet Reaction. Topics in Catalysis, 2018, 61, 1888-1900.	2.8	3
169	Preparation of chiral isobenzofurans from 3-carene in the presence of modified clays. Molecular Catalysis, 2018, 459, 38-45.	2.0	5
170	Valorization of Biomass Derived Terpene Compounds by Catalytic Amination. Catalysts, 2018, 8, 365.	3.5	14
171	Production of Cycloalkanes in Hydrodeoxygenation of Isoeugenol Over Pt―and Irâ€Modified Bifunctional Catalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2841-2854.	2.0	28
172	Hydrodeoxygenation of vanillin over carbon supported metal catalysts. Applied Catalysis A: General, 2018, 561, 137-149.	4.3	73
173	Vanillin Hydrodeoxygenation: Kinetic Modelling and Solvent Effect. Catalysis Letters, 2018, 148, 2856-2868.	2.6	16
174	Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 2018, 351, 1129-1136.	12.7	17
175	Ethene oxychlorination over CuCl2/ \hat{I}^3 -Al2O3 catalyst in micro- and millistructured reactors. Journal of Catalysis, 2018, 364, 334-344.	6.2	18
176	Hydrogenation of ($\hat{a}\in$ ")-Carvone in Presence of Gold Catalysts: Role of the Support. Catalysis in Industry, 2018, 10, 159-165.	0.7	1
177	Kinetics of Catalytic Wet Peroxide Oxidation of Phenolics in Olive Oil Mill Wastewaters over Copper Catalysts. ACS Omega, 2018, 3, 7247-7260.	3.5	13
178	Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules, 2018, 23, 946.	3.8	45
179	Acidâ€modified Halloysite Nanotubes as a Stereoselective Catalyst for Synthesis of 2 <i>H</i> â€Chromene Derivatives by the Reaction of Isopulegol with Aldehydes. ChemCatChem, 2018, 10, 3950-3954.	3.7	21
180	Modified Ag/TiO2 systems: Promising catalysts for liquid-phase oxidation of alcohols. Fuel, 2018, 234, 110-119.	6.4	14

#	Article	IF	CITATIONS
181	Melamine-derived graphitic carbon nitride as a new effective metal-free catalyst for Knoevenagel condensation of benzaldehyde with ethylcyanoacetate. Catalysis Science and Technology, 2018, 8, 2928-2937.	4.1	91
182	Isomerization of \hat{l}_{\pm} -pinene oxide over ZSM-5 based micro-mesoporous materials. Applied Catalysis A: General, 2018, 560, 236-247.	4.3	33
183	Preparation of octahydro-2 H -chromen-4-ol with analgesic activity from isopulegol and thiophene-2-carbaldehyde in the presence of acid-modified clays. Molecular Catalysis, 2018, 453, 139-148.	2.0	24
184	Two-step synthesis of monoterpenoid dioxinols exhibiting analgesic activity from isopulegol and benzaldehyde over heterogeneous catalysts. Catalysis Today, 2017, 279, 56-62.	4.4	10
185	Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts: Influence of reaction parameters and kinetic modelling. Chemical Engineering Journal, 2017, 316, 401-409.	12.7	78
186	Kinetics and modelling of furfural oxidation with hydrogen peroxide over a fibrous heterogeneous catalyst: effect of reaction parameters on yields of succinic acid. Journal of Chemical Technology and Biotechnology, 2017, 92, 2206-2220.	3.2	27
187	Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation. Journal of Catalysis, 2017, 347, 205-221.	6.2	89
188	On Spatial Control in Heterogeneous Multifunctional Catalysts. Catalysis Letters, 2017, 147, 613-621.	2.6	15
189	Promoting effect of alcohols and formic acid on Au-catalyzed one-pot myrtenol amination. Molecular Catalysis, 2017, 433, 414-419.	2.0	14
190	A Combined Theoretical and Experimental Approach for Platinum Catalyzed 1,2-Propanediol Aqueous Phase Reforming. Journal of Physical Chemistry C, 2017, 121, 14636-14648.	3.1	5
191	Solvent-free "green―amidation of stearic acid for synthesis of biologically active alkylamides over iron supported heterogeneous catalysts. Applied Catalysis A: General, 2017, 542, 350-358.	4.3	9
192	Aldose to ketose interconversion: galactose and arabinose isomerization over heterogeneous catalysts. Catalysis Science and Technology, 2017, 7, 5321-5331.	4.1	29
193	New insights in evaluation of acid sites in micro-mesoporous zeolite-like materials using potentiometric titration method. Applied Catalysis A: General, 2017, 543, 34-42.	4.3	10
194	Interpretation of rate optima vs reaction parameters in steady state catalytic kinetics: Molecular aspects beyond concentration dependences. Molecular Catalysis, 2017, 433, 321-333.	2.0	6
195	Carbothermal synthesis of porous silicon carbide using mesoporous silicas. Journal of Materials Science, 2017, 52, 3917-3926.	3.7	20
196	Direct Amination of Dodecanol over Noble and Transition Metal Supported Silica Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 12878-12887.	3.7	14
197	Pd 3 Sn nanoparticles on TiO 2 and ZnO supports as catalysts for semi-hydrogenation: Synthesis and catalytic performance. Applied Catalysis A: General, 2017, 544, 40-45.	4.3	29
198	Solid Base Assisted <i>n</i> -Pentanol Coupling over VIII Group Metals: Elucidation of the Guerbet Reaction Mechanism by DRIFTS. Industrial & Engineering Chemistry Research, 2017, 56, 13310-13321.	3.7	22

#	Article	IF	CITATIONS
199	Synthesis and characterization of Au nano particles supported catalysts for partial oxidation of ethanol: Influence of solution pH, Au nanoparticle size, support structure and acidity. Journal of Catalysis, 2017, 353, 223-238.	6.2	30
200	Preface to the Tapio Salmi Festschrift in Industrial & Engineering Chemistry Research. Industrial & Engineering Chemistry Research, 2017, 56, 12849-12851.	3.7	0
201	Catalytic isomerization of $\hat{l}\pm$ -pinene and 3-carene in the presence of modified layered aluminosilicates. Molecular Catalysis, 2017, 443, 193-202.	2.0	26
202	The synthesis of Ru/CNF colloidal catalysts: Comparison of ex-situ and in-situ methods. Materials Today: Proceedings, 2017, 4, 11364-11370.	1.8	2
203	Size-controlled reverse microemulsion synthesis of Ni and Co metal nanoparticles. Materials Today: Proceedings, 2017, 4, 11385-11391.	1.8	5
204	Kinetics, Modeling, and Process Design of Hydrogen Production by Aqueous Phase Reforming of Xylitol. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 13240-13253.	3.7	22
205	Application of an Extended Shrinking Film Model to Limestone Dissolution. Industrial & Engineering Chemistry Research, 2017, 56, 13254-13261.	3.7	6
206	Application of film theory on the reactions of solid particles with liquids: Shrinking particles with changing liquid films. Chemical Engineering Science, 2017, 160, 161-170.	3.8	12
207	Selectivity control in one-pot myrtenol amination over Au/ZrO2 by molecular hydrogen addition. Journal of Molecular Catalysis A, 2017, 426, 60-67.	4.8	12
208	Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling. Chemical Engineering Journal, 2017, 307, 739-749.	12.7	55
209	Kinetics in the thermal and catalytic amidation of C18 fatty acids with ethanolamine forÂthe production of pharmaceuticals. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 15-29.	1.7	7
210	Gold catalyzed one-pot myrtenol amination: Effect of catalyst redox activation. Catalysis Today, 2017, 279, 63-70.	4.4	10
211	Stearic acid hydrodeoxygenation over Pd nanoparticles embedded in mesoporous hypercrosslinked polystyrene. Journal of Industrial and Engineering Chemistry, 2017, 46, 426-435.	5.8	35
212	Direct hydrodeoxygenation of algal lipids extracted from <i>Chlorella</i> alga. Journal of Chemical Technology and Biotechnology, 2017, 92, 741-748.	3.2	17
213	Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications. Catalysts, 2017, 7, 265.	3.5	85
214	Revisiting the dissolution kinetics of limestone - experimental analysis and modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 1517-1531.	3.2	11
215	Kinetic and Theoretical Investigation of Iron(III)â€Catalyzed Silane Chlorination. ChemCatChem, 2016, 8, 584-592.	3.7	3
216	Improved synthesis and hydrothermal stability of Pt/C catalysts based on size-controlled nanoparticles. Catalysis Science and Technology, 2016, 6, 5196-5206.	4.1	29

#	Article	IF	Citations
217	Selective one-pot carvone oxime hydrogenation over titania supported gold catalyst as a novel approach for dihydrocarvone synthesis. Journal of Molecular Catalysis A, 2016, 420, 142-148.	4.8	9
218	Solvent effects in catalysis: implementation for modelling of kinetics. Catalysis Science and Technology, 2016, 6, 5700-5713.	4.1	21
219	Structure Sensitivity in Catalytic Hydrogenation of Galactose and Arabinose over Ru/C Catalysts. Catalysis Letters, 2016, 146, 1291-1299.	2.6	19
220	Extraction of Lipids from <i>Chlorella</i> Alga by Supercritical Hexane and Demonstration of Their Subsequent Catalytic Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 2016, 55, 10626-10634.	3.7	9
221	Simple method for preparing of sulfur–doped graphitic carbon nitride with superior activity in CO ₂ photoreduction. ChemistrySelect, 2016, 1, 4987-4993.	1.5	54
222	Thermal and Catalytic Amidation of Stearic Acid with Ethanolamine for Production of Pharmaceuticals and Surfactants. Topics in Catalysis, 2016, 59, 1151-1164.	2.8	7
223	Transformation of tetramethyldisiloxane in used oil alkali treatment conditions: mechanism and kinetic modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 105-112.	3.2	1
224	Recycling of Wastes from the Production of Alumina-Based Catalyst Carriers. Industrial & Engineering Chemistry Research, 2016, 55, 9101-9108.	3.7	15
225	Kinetics of the One-Pot Transformation of Citronellal to Menthols on Ru/H-BEA Catalysts. Organic Process Research and Development, 2016, 20, 1647-1653.	2.7	17
226	Unprecedented Selective Heterogeneously Catalysed "Green―Oxidation of Betulin to Biologically Active Compounds using Synthetic Air and Supported Ru Catalysts. ChemistrySelect, 2016, 1, 3866-3869.	1.5	6
227	Elementary Reactions. , 2016, , 101-152.		1
228	Homogeneous Catalytic Kinetics. , 2016, , 221-280.		0
229	Enzymatic Kinetics. , 2016, , 281-343.		7
230	Heterogeneous Catalytic Kinetics. , 2016, , 345-446.		2
231	Development of polyol method for the synthesis of concentrated colloids of PVP-stabilised Ru nanoparticles. International Journal of Nanotechnology, 2016, 13, 15.	0.2	7
232	Review on hydrodynamics and mass transfer in minichannel wall reactors with gas–liquid Taylor flow. Chemical Engineering Research and Design, 2016, 113, 304-329.	5.6	119
233	Controlled synthesis of PVP-based carbon-supported Ru nanoparticles: synthesis approaches, characterization, capping agent removal and catalytic behavior. Catalysis Science and Technology, 2016, 6, 8490-8504.	4.1	15
234	Crystallization of Nano alcium Carbonate: The Influence of Process Parameters. Chemie-Ingenieur-Technik, 2016, 88, 1609-1616.	0.8	5

#	Article	IF	CITATIONS
235	Complex Reactions. , 2016, , 153-219.		1
236	Kinetics of Catalytic Reactions With Multiple/Multifunctional Catalysts., 2016,, 447-496.		0
237	Mass Transfer and Catalytic Reactions. , 2016, , 589-664.		0
238	Kinetic Modeling. , 2016, , 665-721.		1
239	Dynamic Catalysis. , 2016, , 497-587.		1
240	Shaping of Sulfated Zirconia Catalysts by Extrusion: Understanding the Role of Binders. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 6595-6606.	3.7	34
241	Bridging Organic Chemistry and Heterogeneous Catalysis. Topics in Catalysis, 2016, 59, 1095-1096.	2.8	1
242	α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube. Topics in Catalysis, 2016, 59, 1178-1184.	2.8	10
243	Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 2016, 25, 208-224.	12.9	44
244	Determination of acid sites in porous aluminosilicate solid catalysts for aqueous phase reactions using potentiometric titration method. Journal of Catalysis, 2016, 335, 117-124.	6.2	29
245	Size-controlled synthesis of Ni and Co metal nanoparticles by the modified polyol method. International Journal of Nanotechnology, 2016, 13, 3.	0.2	7
246	Mathematical modeling of starch oxidation by hydrogen peroxide in the presence of an iron catalyst complex. Chemical Engineering Science, 2016, 146, 19-25.	3.8	8
247	Acid hydrolysis of $\langle i \rangle O \langle i \rangle$ -acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung, 2016, 70, 187-194.	1.9	19
248	Aqueous extraction of hemicelluloses from spruce – From hot to warm. Bioresource Technology, 2016, 199, 279-282.	9.6	24
249	Comparative study of sulfur-free nickel and palladium catalysts in hydrodeoxygenation of different fatty acid feedstocks for production of biofuels. Catalysis Science and Technology, 2016, 6, 1476-1487.	4.1	58
250	Acid hydrolysis of xylan. Catalysis Today, 2016, 259, 376-380.	4.4	57
251	Heterogeneous Chemoenzymatic Catalyst Combinations for Oneâ€Pot Dynamic Kinetic Resolution Applications. ChemCatChem, 2015, 7, 4004-4015.	3.7	42
252	Pharmaceuticals and Surfactants from Algaâ€Derived Feedstock: Amidation of Fatty Acids and Their Derivatives with Amino Alcohols. ChemSusChem, 2015, 8, 2670-2680.	6.8	8

#	Article	IF	Citations
253	The transformation of silicon species contained in used oils under industrially relevant alkali treatment conditions. Journal of Chemical Technology and Biotechnology, 2015, 90, 1991-1998.	3.2	O
254	Selective hydrogenation of fatty acids to alcohols over highly dispersed ReO /TiO2 catalyst. Journal of Catalysis, 2015, 328, 197-207.	6.2	72
255	Maltose hydrogenation over ruthenium nanoparticles impregnated in hypercrosslinked polystyrene. Chemical Engineering Journal, 2015, 282, 37-44.	12.7	15
256	Effect of acidity and texture of micro-, mesoporous and hybrid micromesoporous materials on the synthesis of paramenthanic diol exhibiting anti-Parkinson activity. Journal of Lithic Studies, 2015, 1, 146-154.	0.5	6
257	Preparation of carbide-derived carbon supported platinum catalysts. Catalysis Today, 2015, 249, 30-37.	4.4	22
258	Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation. RSC Advances, 2015, 5, 15898-15908.	3.6	20
259	Iron catalyzed halogenation of benzylic aldehydes and ketones. Catalysis Science and Technology, 2015, 5, 2406-2417.	4.1	9
260	Transformations of 1-(2-Aminophenyl) propan-2-ol to 2-Methylindoline. Catalysis Letters, 2015, 145, 955-963.	2.6	2
261	Properties of adsorbents used for bleaching of vegetable oils and animal fats. Journal of Chemical Technology and Biotechnology, 2015, 90, 1579-1591.	3.2	18
262	Soot particulates abatement in diesel engine exhaust by catalytic oxidation followed their trapping in filters. Chemical Engineering Journal, 2015, 269, 416-424.	12.7	17
263	Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp Algal Research, 2015, 11, 156-164.	4.6	26
264	On Synthesis and Characterization of Sulfated Alumina–Zirconia Catalysts for Isobutene Alkylation. Catalysis Letters, 2015, 145, 1651-1659.	2.6	14
265	Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. Journal of Catalysis, 2015, 330, 93-105.	6.2	34
266	Kinetics of ethanol hydrochlorination over \hat{I}^3 -Al2O3 in a microstructured reactor. Chemical Engineering Science, 2015, 134, 681-693.	3.8	4
267	Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: Sugar hydrogenation as a case study. Chemical Engineering Research and Design, 2015, 102, 171-185.	5.6	24
268	Investigation of Polyol Adsorption on Ru, Pd, and Re Using vdW Density Functionals. Journal of Physical Chemistry C, 2015, 119, 17182-17192.	3.1	20
269	Influence of two different alcohols in the esterification of fatty acids over layered zinc stearate/palmitate. Bioresource Technology, 2015, 193, 337-344.	9.6	17
270	Extraction of Spent Bleaching Earth inÂtheÂProduction of Renewable Diesel. Chemical Engineering and Technology, 2015, 38, 769-776.	1.5	19

#	Article	IF	CITATIONS
271	Combination of Reaction and Separation in Heterogeneous Catalytic Hydrogenation of Ethylformate. Chemical Engineering and Technology, 2015, 38, 804-812.	1.5	3
272	A route to produce renewable diesel from algae: Synthesis and characterization of biodiesel via in situ transesterification of Chlorella alga and its catalytic deoxygenation to renewable diesel. Fuel, 2015, 155, 144-154.	6.4	84
273	Aqueous Phase Reforming of Industrially Relevant Sugar Alcohols with Different Chiralities. ACS Catalysis, 2015, 5, 2989-3005.	11.2	33
274	Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate – Kinetic modeling. Fuel, 2015, 153, 445-454.	6.4	25
275	Liquid phase hydrogenation of nitrobenzene. Applied Catalysis A: General, 2015, 499, 66-76.	4.3	74
276	Cluster Size Dependent Kinetics: Analysis of Different Reaction Mechanisms. Catalysis Letters, 2015, 145, 1948-1954.	2.6	12
277	Prins cyclization: Synthesis of compounds with tetrahydropyran moiety over heterogeneous catalysts. Journal of Molecular Catalysis A, 2015, 410, 260-270.	4.8	40
278	Lignin isolation from spruce wood with low concentration aqueous alkali at high temperature and pressure: influence of hot-water pre-extraction. Green Chemistry, 2015, 17, 5058-5068.	9.0	25
279	Gold particle size effect in biomass-derived lignan hydroxymatairesinol oxidation over Au/Al2O3 catalysts. Applied Catalysis A: General, 2015, 504, 248-255.	4.3	7
280	On the Interaction of Metal Nanoparticles with Supports. Topics in Catalysis, 2015, 58, 1127-1135.	2.8	5
281	Chemoselective Liquid Phase Hydrogenation of 3-Nitrostyrene over Pt Nanoparticles: Synergy with ZnO Support. Industrial & Engineering Chemistry Research, 2015, 54, 8659-8669.	3.7	31
282	Isomerization of verbenol oxide to a diol with para-menthane structure exhibiting anti-Parkinson activity. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 299-314.	1.7	3
283	Heterogeneous catalysis for transformation of biomass derived compounds beyond fuels: Synthesis of monoterpenoid dioxinols with analgesic activity. Journal of Molecular Catalysis A, 2015, 397, 48-55.	4.8	16
284	Preparation of selective ZnCl 2 /alumina catalysts for methyl chloride synthesis: Influence of pH, precursor and zinc loading. Applied Catalysis A: General, 2015, 490, 117-127.	4.3	8
285	Structure sensitivity in catalytic hydrogenation of glucose over ruthenium. Catalysis Today, 2015, 241, 195-199.	4.4	60
286	H- and Fe-modified zeolite beta catalysts for preparation of trans-carveol from $\hat{l}\pm$ -pinene oxide. Catalysis Today, 2015, 241, 237-245.	4.4	40
287	Selective carvone hydrogenation to dihydrocarvone over titania supported gold catalyst. Catalysis Today, 2015, 241, 189-194.	4.4	15
288	Continuous hydrogenation of glucose with ruthenium on carbon nanotube catalysts. Catalysis Science and Technology, 2015, 5, 953-959.	4.1	30

#	Article	IF	Citations
289	The base-catalyzed transformation of tetramethyldisiloxane: influence of reaction media. Journal of Chemical Technology and Biotechnology, 2015, 90, 34-43.	3.2	3
290	Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catalysis Today, 2015, 257, 169-176.	4.4	22
291	One-pot synthesis of (R)-2-acetoxy-1-indanone from 1,2-indanedione combining metal catalyzed hydrogenation and chemoenzymatic dynamic kinetic resolution. Catalysis Science and Technology, 2015, 5, 150-160.	4.1	18
292	Enantioselective Hydrogenation of Ethyl Benzoylformate, from Mechanism and Kinetics to Continuous Reactor Technology. Topics in Catalysis, 2014, 57, 1576-1581.	2.8	1
293	Processing microalgae: beyond lipids. Biofuels, 2014, 5, 29-32.	2.4	5
294	Novel catalysts for conversion of liquid hydrocarbon. Russian Journal of Applied Chemistry, 2014, 87, 1849-1857.	0.5	1
295	Sugars and sugar derivatives in ionic liquid media obtained from lignocellulosic biomass: Comparison of capillary electrophoresis and chromatographic analysis. Catalysis Today, 2014, 223, 18-24.	4.4	27
296	Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition. Catalysis Today, 2014, 223, 97-107.	4.4	52
297	Heat Treatment and Chemical Composition of Fatty Acids and Rosin Acids Mixtures: Effects on Their Thermal Properties and Morphology. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1035-1046.	1.9	3
298	Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AICHE Journal, 2014, 60, 1066-1077.	3.6	37
299	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	4.4	37
300	Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 2014, 114, 1909-1971.	47.7	367
301	Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 2014, 470, 162-176.	4.3	55
302	Kinetics and catalyst deactivation in the enantioselective hydrogenation of ethyl benzoylformate over Pt/Al ₂ O ₃ . Catalysis Science and Technology, 2014, 4, 170-178.	4.1	12
303	Aqueous-phase reforming of xylitol over Pt/C and Pt/TiC-CDC catalysts: catalyst characterization and catalytic performance. Catalysis Science and Technology, 2014, 4, 387-401.	4.1	54
304	Spruce Hemicellulose for Chemicals Using Aqueous Extraction: Kinetics, Mass Transfer, and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6341-6350.	3.7	47
305	Esterification of Fatty Acids and Short-Chain Carboxylic Acids with Stearyl Alcohol and Sterols. ACS Sustainable Chemistry and Engineering, 2014, 2, 537-545.	6.7	10
306	Kinetic Modeling of Sorbitol Aqueous-Phase Reforming over Pt/Al ₂ O ₃ . Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 4580-4588.	3.7	28

#	Article	IF	Citations
307	Catalyst deactivation and structure sensitivity. Catalysis Science and Technology, 2014, 4, 3340.	4.1	9
308	Kinetic Modeling of Ethyl Benzoylformate Enantioselective Hydrogenation over Pt/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2014, 53, 11945-11953.	3.7	2
309	Solvent controlled catalysis: Synthesis of aldehyde, acid or ester by selective oxidation of benzyl alcohol with gold nanoparticles on alumina. Applied Catalysis A: General, 2014, 485, 202-206.	4.3	60
310	Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction. ChemSusChem, 2014, 7, 2947-2953.	6.8	42
311	MODELING OF DRUG DISSOLUTION KINETICS WITH SIGMOIDAL BEHAVIOR FROM ORDERED MESOPOROUS SILICA. Chemical Engineering Communications, 2014, 201, 579-592.	2.6	11
312	Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts. Topics in Catalysis, 2014, 57, 1470-1475.	2.8	4
313	Hydrogenation of 2-methylindole using supported metal catalysts. Catalysis Communications, 2014, 56, 41-44.	3.3	13
314	Structure sensitivity in heterogeneous catalysis with noncompetitive adsorption of reactants: Selective oxidation of lignan hydroxymatairesinol to oxomatairesinol over gold catalysts. Comptes Rendus Chimie, 2014, 17, 770-774.	0.5	9
315	Kinetic modeling of one-pot myrtenol amination over Au/ZrO2 catalyst. Chemical Engineering Journal, 2014, 238, 164-171.	12.7	21
316	Isomerization of bicyclic terpene epoxides into allylic alcohols without changing of the initial structure. Journal of Molecular Catalysis A, 2014, 388-389, 162-166.	4.8	17
317	Evolution of heterogeneous catalytic reactions kinetics with time. Comptes Rendus Chimie, 2014, 17, 612-614.	0.5	1
318	Utilisation of a multitubular reactor system for parallel screening of catalysts for ring opening of decalin in continuous mode. Chemical Engineering Journal, 2014, 238, 3-8.	12.7	8
319	Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters. Journal of Chemical Technology and Biotechnology, 2014, 89, 1607-1626.	3.2	56
320	Kinetics of the selective oxidation of the lignan hydroxymatairesinol to oxomatairesinol over Au/Al2O3 catalysts. Journal of Molecular Catalysis A, 2014, 388-389, 154-161.	4.8	2
321	One-pot myrtenol amination over Au nanoparticles supported on different metal oxides. Applied Catalysis A: General, 2013, 464-465, 348-356.	4.3	34
322	Imidazoliumâ€Based Poly(ionic liquid)s as New Alternatives for CO ₂ Capture. ChemSusChem, 2013, 6, 1500-1509.	6.8	75
323	Acid hydrolysis of O-acetyl-galactoglucomannan. Catalysis Science and Technology, 2013, 3, 116-122.	4.1	22
324	On the way to improve cetane number in diesel fuels: Ring opening of decalin over Ir-modified embedded mesoporous materials. Catalysis in Industry, 2013, 5, 105-122.	0.7	8

#	Article	IF	CITATIONS
325	Catalytic Pyrolysis of Lignocellulosic Biomass. , 2013, , 137-159.		12
326	Solvent Effects in the Enantioselective Hydrogenation of Ethyl Benzoylformate. Catalysis Letters, 2013, 143, 1051-1060.	2.6	15
327	15th Nordic Symposium on Catalysis, Mariehamn, Åland, June 16–18, 2012. Topics in Catalysis, 2013, 56, 511-511.	2.8	0
328	Isomerization of α-Pinene Oxide Over Iron-Modified Zeolites. Topics in Catalysis, 2013, 56, 696-713.	2.8	33
329	Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit. Topics in Catalysis, 2013, 56, 714-724.	2.8	18
330	Interconversion of Lactose to Lactulose in Alkaline Environment: Comparison of Different Catalysis Concepts. Topics in Catalysis, 2013, 56, 839-845.	2.8	11
331	Effect of catalyst synthesis parameters on the metal particle size. Applied Catalysis A: General, 2013, 451, 251-281.	4.3	106
332	Catalysis in Biomass Processing. , 2013, , 559-586.		6
333	Integrated modelling of reaction and catalyst deactivation kinetics—Hydrogenation of sitosterol to sitostanol over a palladium catalyst. Chemical Engineering Science, 2013, 104, 156-165.	3.8	6
334	Kinetics of Lactose Hydrogenation over Ruthenium Nanoparticles in Hypercrosslinked Polystyrene. Industrial & Engineering Chemistry Research, 2013, 52, 14066-14080.	3.7	22
335	Technology for rerefining used lube oils applied in Europe: a review. Journal of Chemical Technology and Biotechnology, 2013, 88, 1780-1793.	3.2	44
336	New modelling approach to liquid–solid reaction kinetics: From ideal particles to real particles. Chemical Engineering Research and Design, 2013, 91, 1876-1889.	5.6	33
337	Base-Catalyzed Transformations of Tetramethyldisiloxane. Industrial & Engineering Chemistry Research, 2013, 52, 10080-10088.	3.7	9
338	Preparation and characterization of neat and ZnCl2 modified zeolites and alumina for methyl chloride synthesis. Applied Catalysis A: General, 2013, 468, 120-134.	4.3	32
339	Methyl chloride synthesis over Al2O3 catalyst coated microstructured reactorâ€"Thermodynamics, kinetics and mass transfer. Chemical Engineering Science, 2013, 95, 232-245.	3.8	25
340	CO2 capture from biogas: absorbent selection. RSC Advances, 2013, 3, 2979.	3.6	33
341	Chemical Characterization of Lube Oils. Energy & Samp; Fuels, 2013, 27, 27-34.	5.1	66
342	Catalytic oxidation of rare sugars over gold catalysts. Catalysis Science and Technology, 2013, 3, 297-307.	4.1	44

#	Article	IF	CITATIONS
343	Regioselective Hydrogenation of 1,2-Indanedione Over Heterogeneous Pd and Pt Catalysts. Catalysis Letters, 2013, 143, 142-149.	2.6	5
344	Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor – Effects of wood particle size. Bioresource Technology, 2013, 143, 212-220.	9.6	65
345	Influence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of Adiethyl carbonate. Materials Chemistry and Physics, 2013, 143, 65-75.	4.0	26
346	Pyrolysis of pine and gasification of pine chars $\hat{a} \in \text{``Influence'}$ Influence of organically bound metals. Bioresource Technology, 2013, 128, 22-29.	9.6	63
347	Pyrolysis of beet pulp in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2013, 104, 426-432.	5.5	6
348	Microreactors as tools in kinetic investigations: Ethylene oxide formation on silver catalyst. Chemical Engineering Science, 2013, 87, 306-314.	3.8	42
349	Oxygenâ€Assisted Hydroxymatairesinol Dehydrogenation: A Selective Secondaryâ€Alcohol Oxidation over a Gold Catalyst. Chemistry - A European Journal, 2013, 19, 4577-4585.	3.3	13
350	The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide. Catalysis Today, 2013, 210, 47-54.	4.4	35
351	Experimental and Modeling Study of Catalytic Hydrogenation of Glucose to Sorbitol in a Continuously Operating Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 7690-7703.	3.7	18
352	Isomerization of \hat{l}^2 -pinene oxide over Sn-modified zeolites. Journal of Molecular Catalysis A, 2013, 366, 228-237.	4.8	28
353	Oxidation of Starch by H ₂ O ₂ in the Presence of Iron Tetrasulfophthalocyanine Catalyst: The Effect of Catalyst Concentration, pH, Solid–Liquid Ratio, and Origin of Starch. Industrial & Drigineering Chemistry Research, 2013, 52, 9351-9358.	3.7	22
354	Opening of monoterpene epoxide to a potent anti-Parkinson compound of para-menthane structure over heterogeneous catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 449-458.	1.7	14
355	Kinetic Studies on <i>sec</i> àêAlcohol Racemization with Dicarbonylchloro(pentabenzylcyclopentadienyl)―and Dicarbonylchloro(pentaphenylcyclopentadienyl)ruthenium Catalysts. ChemCatChem, 2013, 5, 2436-2445.	3.7	5
356	On the performance of Ag/Al ₂ O ₃ as a HC-SCR catalyst – influence of silver loading, morphology and nature of the reductant. Catalysis Science and Technology, 2013, 3, 644-653.	4.1	38
357	Selective Preparation of trans-Carveol over Ceria Supported Mesoporous Materials MCM-41 and SBA-15. Materials, 2013, 6, 2103-2118.	2.9	27
358	lonic liquids versus amine solutions in biogas upgrading: the level of volatile organic compounds. Biofuels, 2013, 4, 295-311.	2.4	9
359	Amine Solutions for Biogas Upgrading: Ideal versus Non″deal Absorption Isotherms. Chemical Engineering and Technology, 2013, 36, 740-748.	1.5	14
360	Selective Oxidation/Dehydrogenation Reactions. Springer Briefs in Molecular Science, 2013, , 11-31.	0.1	0

#	Article	IF	CITATIONS
361	Gold Catalysts Stability. Springer Briefs in Molecular Science, 2013, , 47-49.	0.1	O
362	Isomerization Reactions. Springer Briefs in Molecular Science, 2013, , 43-45.	0.1	0
363	2.3 Thermal Conversion of Biomass. , 2012, , 109-124.		O
364	Effect of the Load Size on the Efficiency of Microwave Heating Under Stop Flow and Continuous Flow Conditions. Journal of Microwave Power and Electromagnetic Energy, 2012, 46, 83-92.	0.8	24
365	On Cluster Size Dependent Activity and Selectivity in Heterogeneous Catalysis. Catalysis Letters, 2012, 142, 1279-1285.	2.6	13
366	Ethylene oxide – kinetics and mechanism. Current Opinion in Chemical Engineering, 2012, 1, 321-327.	7.8	13
367	Gas-phase microreactors as a powerful tool for kinetic investigations. Russian Journal of General Chemistry, 2012, 82, 2034-2059.	0.8	4
368	Gold Catalysts for Selective Aerobic Oxidation of the Lignan Hydroxymatairesinol to Oxomatairesinol: Catalyst Deactivation and Regeneration. Catalysis Letters, 2012, 142, 1011-1019.	2.6	9
369	Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catalysis Today, 2012, 196, 26-33.	4.4	35
370	Evolution of carbonaceous deposits on H-mordenite and Pt-doped H-mordenite during n-butane conversion. Journal of Catalysis, 2012, 296, 132-142.	6.2	15
371	Kinetics of l-arabinoseoxidation over supported goldcatalysts with in situcatalyst electrical potential measurements. Catalysis Science and Technology, 2012, 2, 423-431.	4.1	20
372	<scp> </scp> -Arabinose Conformers Adsorption on Ruthenium Surfaces: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 14908-14916.	3.1	11
373	Low temperature gas-phase oxidation of ethanol over Au/TiO2. Applied Catalysis A: General, 2012, 433-434, 88-95.	4.3	52
374	Aqueous phase reforming of xylitol and sorbitol: Comparison and influence of substrate structure. Applied Catalysis A: General, 2012, 435-436, 172-180.	4.3	86
375	CO2 removal with â€~switchable' versus â€~classical' ionic liquids. Separation and Purification Technology, 2012, 97, 42-50.	7.9	48
376	Hydrogenation of geraniol using ruthenium–BINAP catalysts. Catalysis Science and Technology, 2012, 2, 1901.	4.1	2
377	Fatty Acids-Derived Fuels from Biomass via Catalytic Deoxygenation. , 2012, , 199-220.		2
378	Influence of Hydrogen in Catalytic Deoxygenation of Fatty Acids and Their Derivatives over Pd/C. Industrial & Decivatives over Pd/C. Industrial & Decivatives over Pd/C.	3.7	105

#	Article	IF	CITATIONS
379	Lipase-catalyzed acylation in a continuous down-flow fixed-bed reactor. Kinetics and Catalysis, 2012, 53, 673-683.	1.0	6
380	Comparative Study of Au Modified Beta, MCM-22, Mordenite, ZSM-5, MCM-41, Ce-MCM-41 Catalysts in Piperonyl Alcohol Oxidation. Current Catalysis, 2012, 1, 58-66.	0.5	7
381	Preparation and Characterization of Alumina-Based Microreactors for Application in Methyl Chloride Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 4545-4555.	3.7	32
382	Catalytic Transformations of Birch Kraft Pulp. ACS Catalysis, 2012, 2, 1381-1393.	11.2	30
383	Mechanistic model for kinetics of propene hydroformylation with Rh catalyst. AICHE Journal, 2012, 58, 2192-2201.	3.6	8
384	Capturing CO ₂ : conventional versus ionic-liquid based technologies. Russian Chemical Reviews, 2012, 81, 435-457.	6.5	43
385	Hydrogenation of Citral Over Carbon Supported Iridium Catalysts. Catalysis Letters, 2012, 142, 690-697.	2.6	15
386	Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects. Catalysis Letters, 2012, 142, 676-689.	2.6	10
387	Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects. Catalysis Letters, 2012, 142, 817-829.	2.6	4
388	Catalytic Transformation of Abietic Acid to Hydrocarbons. Topics in Catalysis, 2012, 55, 673-679.	2.8	20
389	From woody biomass extractives to health-promoting substances: Selective oxidation of the lignan hydroxymatairesinol to oxomatairesinol over Au, Pd, and Au–Pd heterogeneous catalysts. Journal of Catalysis, 2012, 291, 95-103.	6.2	21
390	Dimerization of 1-butene in liquid phase reaction: Influence of structure, pore size and acidity of Beta zeolite and MCM-41 mesoporous material. Microporous and Mesoporous Materials, 2012, 147, 127-134.	4.4	20
391	Characterization of MFI and BEA embedded in mesoporous molecular sieve $\hat{a} \in \mathbb{C}$ Thermal stability. Microporous and Mesoporous Materials, 2012, 154, 124-132.	4.4	4
392	Synthesis and characterization of solid base mesoporous and microporous catalysts: Influence of the support, structure and type of base metal. Microporous and Mesoporous Materials, 2012, 152, 71-77.	4.4	44
393	Deposition of carbonaceous species over Ag/alumina catalysts for the HC-SCR of NOx under lean conditions: a qualitative and quantitative study. Catalysis Science and Technology, 2011, 1, 1456.	4.1	7
394	Kinetics of lactose and rhamnose oxidation over supported metal catalysts. Physical Chemistry Chemical Physics, 2011, 13, 9268.	2.8	19
395	Structure Sensitivity in <scp>l</scp> -Arabinose Oxidation over Au/Al ₂ O ₃ Catalysts. Journal of Physical Chemistry C, 2011, 115, 1036-1043.	3.1	37
396	Batch and Semibatch Partial Oxidation of Starch by Hydrogen Peroxide in the Presence of an Iron Tetrasulfophthalocyanine Catalyst: The Effect of Ultrasound and the Catalyst Addition Policy. Industrial & Damp; Engineering Chemistry Research, 2011, 50, 749-757.	3.7	29

#	Article	IF	Citations
397	Kinetics of Aqueous Extraction of Hemicelluloses from Spruce in an Intensified Reactor System. Industrial & Engineering Chemistry Research, 2011, 50, 3818-3828.	3.7	61
398	Step Changes and Deactivation Behavior in the Continuous Decarboxylation of Stearic Acid. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 11049-11058.	3.7	42
399	Nanokinetics for nanocatalysis. Catalysis Science and Technology, 2011, 1, 380.	4.1	37
400	Simultaneous detection of the absorption spectrum and refractive index ratio with a spectrophotometer: monitoring contaminants in bioethanol. Measurement Science and Technology, 2011, 22, 055803.	2.6	6
401	Inversion of the Enantioselectivity in the Hydrogenation of $(\langle i \rangle E \langle i \rangle)$ -2,3-diphenylpropenoic Acids over Pd Modified by Cinchonidine Silyl Ethers. ACS Catalysis, 2011, 1, 1316-1326.	11.2	23
402	Catalytic Deoxygenation of Tall Oil Fatty Acid over Palladium Supported on Mesoporous Carbon. Energy &	5.1	82
403	Chemo-bio catalyzed synthesis of R-1-phenylethyl acetate over bimetallic PdZn catalysts, lipase, and Ru/Al2O3. part I. Kinetics and Catalysis, 2011, 52, 72-76.	1.0	4
404	Chemo-bio catalyzed synthesis of R-1-phenylethyl acetate over bimetallic PdZn catalysts, lipase, and Ru/Al2O3. Part II. Kinetics and Catalysis, 2011, 52, 77-81.	1.0	5
405	Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 2011, 416, 242-51.	5.2	50
406	Oxidative dehydrogenation of a biomass derived lignan – Hydroxymatairesinol over heterogeneous gold catalysts. Journal of Catalysis, 2011, 282, 54-64.	6.2	29
407	Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation. Journal of Catalysis, 2011, 282, 228-236.	6.2	78
408	Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2–MgO catalyst in the presence of butylene oxide as additive. Applied Catalysis A: General, 2011, 404, 39-39.	4.3	9
409	Palladium catalysts supported on N-functionalized hollow vapor-grown carbon nanofibers: The effect of the basic support and catalyst reduction temperature. Applied Catalysis A: General, 2011, 408, 137-147.	4.3	12
410	Evaluation of gold on alumina catalyst deactivation dynamics during \hat{l}_{\pm} -pinene isomerization. Chemical Engineering Journal, 2011, 176-177, 42-48.	12.7	25
411	Enhanced yields of diethyl carbonate via one-pot synthesis from ethanol, carbon dioxide and butylene oxide over cerium (IV) oxide. Chemical Engineering Journal, 2011, 176-177, 124-133.	12.7	48
412	Revisiting shrinking particle and product layer models for fluid–solid reactions – From ideal surfaces to real surfaces. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1076-1084.	3.6	18
413	Common potholes in modeling solid–liquid reactions—methods for avoiding them. Chemical Engineering Science, 2011, 66, 4459-4467.	3.8	18
414	Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chemical Reviews, 2011, 111, 5638-5666.	47.7	350

#	Article	IF	Citations
415	Selective Oxidation of <scp>D</scp> â€Galactose over Gold Catalysts. ChemCatChem, 2011, 3, 1789-1798.	3.7	27
416	Catalysis in biomass processing. Catalysis in Industry, 2011, 3, 218-249.	0.7	52
417	Selective Hydrolysis of Arabinogalactan into Arabinose and Galactose Over Heterogeneous Catalysts. Catalysis Letters, 2011, 141, 408-412.	2.6	44
418	Did Chemisorption Become an Obsolete Method With Advent of Tem? Comparison of Mean Particle Size and Distribution of Silver on Alumina. Catalysis Letters, 2011, 141, 665-669.	2.6	7
419	Influence of Cluster Size Distribution on Cluster Size Dependent Catalytic Kinetics. Catalysis Letters, 2011, 141, 982-986.	2.6	5
420	The Effect of Alkoxide Ionic Liquids on the Synthesis of Dimethyl Carbonate from CO2 and Methanol over ZrO2–MgO. Catalysis Letters, 2011, 141, 1254-1261.	2.6	49
421	Unusual behavior of modifier mixtures in heterogeneous enantioselective catalysis: beyond nonlinear phenomena. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 1-9.	1.7	8
422	Thermodynamic analysis of the cluster size evolution in catalyst preparation by deposition–precipitation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 259-266.	1.7	15
423	Catalytic Deoxygenation of C18 Fatty Acids Over Mesoporous Pd/C Catalyst for Synthesis of Biofuels. Topics in Catalysis, 2011, 54, 460-466.	2.8	64
424	Catalytic Pyrolysis of Pine Biomass Over H-Beta Zeolite in a Dual-Fluidized Bed Reactor: Effect of Space Velocity on the Yield and Composition of Pyrolysis Products. Topics in Catalysis, 2011, 54, 941-948.	2.8	48
425	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	3.3	144
426	Sugar hydrogenation over a Ru/C catalyst. Journal of Chemical Technology and Biotechnology, 2011, 86, 658-668.	3.2	64
427	Valorization of cellulose over metal supported mesoporous materials. Catalysis Today, 2011, 167, 91-95.	4.4	59
428	Transformation of levoglucosan over H-MCM-22 zeolite and H-MCM-41 mesoporous molecular sieve catalysts. Biomass and Bioenergy, 2011, 35, 1967-1976.	5.7	20
429	Selective oxidation of arabinose to arabinonic acid over Pd–Au catalysts supported on alumina and ceria. Applied Catalysis A: General, 2011, 392, 69-79.	4.3	42
430	Pillared H-MCM-36 mesoporous and H-MCM-22 microporous materials for conversion of levoglucosan: Influence of varying acidity. Applied Catalysis A: General, 2011, 397, 13-21.	4.3	23
431	Solid-liquid reaction kinetics – experimental aspects and model development. Reviews in Chemical Engineering, 2011, 27, .	4.4	31
432	Kinetic modeling of lipaseâ€mediated oneâ€pot chemoâ€bio cascade synthesis of <i>R</i> â€1â€phenyl ethyl acceptanting from acetophenone. Journal of Chemical Technology and Biotechnology, 2010, 85, 192-198.	etate 3.2	3

#	Article	IF	Citations
433	Continuous mode linoleic acid hydrogenation on Pd/sibunit catalyst. Catalysis in Industry, 2010, 2, 95-100.	0.7	3
434	Kinetics of Catalytic Reactions on Nanoclusters. Langmuir, 2010, 26, 4854-4859.	3.5	12
435	Formation of Furfural in Catalytic Transformation of Levoglucosan over Mesoporous Materials. ChemCatChem, 2010, 2, 539-546.	3.7	30
436	Dynamic Kinetic Resolution of <i>rac</i> ê2â€Hydroxyâ€1â€indanone by using a Heterogeneous Ru(OH) ₃ /Al ₂ O ₃ Racemization Catalyst and Lipase. ChemCatChem, 2010, 2, 1615-1621.	3.7	15
437	"Doubleâ€Peak―Catalytic Activity of Nanosized Gold Supported on Titania in Gasâ€Phase Selective Oxidation of Ethanol. ChemCatChem, 2010, 2, 1535-1538.	3.7	53
438	Formation of Furfural in Catalytic Transformation of Levoglucosan over Mesoporous Materials. ChemCatChem, 2010, 2, 717-717.	3.7	0
439	Chapter 19. Catalytic Deoxygenation of Fatty Acids and their Derivatives for the Production of Renewable Diesel. RSC Energy and Environment Series, 2010, , 496-510.	0.5	6
440	Mechanistic modelling of kinetics and mass transfer for a solid–liquid system: Leaching of zinc with ferric iron. Chemical Engineering Science, 2010, 65, 4460-4471.	3.8	26
441	Diesel-like Hydrocarbons from Catalytic Deoxygenation of Stearic Acid over Supported Pd Nanoparticles on SBA-15 Catalysts. Catalysis Letters, 2010, 134, 250-257.	2.6	91
442	11C-radiolabeling study of nickel modified H-MCM-41 with methanol as a probe molecule. Journal of Materials Science, 2010, 45, 4229-4235.	3.7	3
443	Reaction Routes in Selective Ring Opening of Naphthenes. Topics in Catalysis, 2010, 53, 1172-1175.	2.8	12
444	Catalytic Deoxygenation of Tall Oil Fatty Acids Over a Palladium-Mesoporous Carbon Catalyst: A New Source of Biofuels. Topics in Catalysis, 2010, 53, 1274-1277.	2.8	65
445	Ring Opening of Decalin Over Zeolite-Supported Iridium Catalysts. Topics in Catalysis, 2010, 53, 1438-1445.	2.8	36
446	Acylation of (R,S)-1-phenylethanol with ethyl acetate over an immobilized enzyme. Research on Chemical Intermediates, 2010, 36, 245-252.	2.7	2
447	Mechanism of the chemo–bio catalyzed cascade synthesis of R-1-phenylethyl acetate over Pd/Al2O3, lipase, and Ru-catalysts. Research on Chemical Intermediates, 2010, 36, 193-210.	2.7	5
448	The effect of palladium dispersion and promoters on lactose oxidation kinetics. Research on Chemical Intermediates, 2010, 36, 423-442.	2.7	9
449	Stability of hydrogen peroxide during perhydrolysis of carboxylic acids on acidic heterogeneous catalysts. Research on Chemical Intermediates, 2010, 36, 389-401.	2.7	4
450	Supported ionic liquids in Burkholderia cepacia lipase-catalyzed asymmetric acylation. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 129-134.	1.8	29

#	Article	IF	CITATIONS
451	Kinetic analysis of cluster size dependent activity and selectivity. Journal of Catalysis, 2010, 276, 85-91.	6.2	73
452	Kinetics and mass transfer in hydroformylation-bulk or film reaction?. Canadian Journal of Chemical Engineering, 2010, 88, n/a-n/a.	1.7	3
453	Reaction Products and Transformations of Intermediates in the Aqueousâ€Phase Reforming of Sorbitol. ChemSusChem, 2010, 3, 708-718.	6.8	94
454	Kinetics and modeling of (R,S)â€1â€phenylethanol acylation over lipase. International Journal of Chemical Kinetics, 2010, 42, 629-639.	1.6	8
455	Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Applied Catalysis A: General, 2010, 383, 1-13.	4.3	82
456	Selective catalytic oxidation of arabinose—A comparison of gold and palladium catalysts. Applied Catalysis A: General, 2010, 386, 101-108.	4.3	33
457	Deoxygenation of dodecanoic acid under inert atmosphere. Fuel, 2010, 89, 2033-2039.	6.4	93
458	Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel, 2010, 89, 1992-2000.	6.4	139
459	Dissolution of boehmite in sodium hydroxide at ambient pressure: Kinetics and modelling. Hydrometallurgy, 2010, 102, 22-30.	4.3	13
460	The role of bio-ethanol in aqueous phase reforming to sustainable hydrogen. International Journal of Hydrogen Energy, 2010, 35, 12642-12649.	7.1	62
461	The man behind the name: Professor Mikhail Temkin. Journal of Molecular Catalysis A, 2010, 315, 105-107.	4.8	1
462	Kinetic modelling of regioselectivity in alkenes hydroformylation over rhodium. Journal of Molecular Catalysis A, 2010, 315, 148-154.	4.8	12
463	Size-dependent heterogeneous catalytic kinetics. Journal of Molecular Catalysis A, 2010, 315, 226-230.	4.8	58
464	Hydrogenolysis of hydroxymatairesinol on Y derived catalysts: A computational study. Journal of Molecular Catalysis A, 2010, 333, 136-144.	4.8	8
465	Selective vapour-phase $\hat{I}\pm$ -pinene isomerization to camphene over gold-on-alumina catalyst. Applied Catalysis A: General, 2010, 385, 136-143.	4.3	53
466	Decarboxylation of fatty acids over Pd supported on mesoporous carbon. Catalysis Today, 2010, 150, 28-31.	4.4	117
467	Linoleic acid isomerization over mesoporous carbon supported gold catalysts. Catalysis Today, 2010, 150, 32-36.	4.4	19
468	Modelling of transient kinetics in catalytic three-phase reactors: Enantioselective hydrogenation. Chemical Engineering Science, 2010, 65, 1076-1087.	3.8	14

#	Article	IF	CITATIONS
469	Systematic conformational search analysis of the SRR and RRR epimers of 7â€hydroxymatairesinol. Journal of Physical Organic Chemistry, 2010, 23, 141-147.	1.9	6
470	Mechanistic investigations of the reaction network in chemo-bio catalyzed synthesis of R-1-phenylethyl acetate. Kinetics and Catalysis, 2010, 51, 809-815.	1.0	1
471	On quantitative description of metal particles size effect in catalytic kinetics. Kinetics and Catalysis, 2010, 51, 828-831.	1.0	18
472	Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide: Circumventing Thermodynamic Limitations. Industrial & Dioxide: Circumventing Thermodynamic	3.7	88
473	Modeling the Influence of Wood Anisotropy and Internal Diffusion on Delignification Kinetics. Industrial & Engineering Chemistry Research, 2010, 49, 9703-9711.	3.7	26
474	The Dissolution Kinetics of Gibbsite in Sodium Hydroxide at Ambient Pressure. Industrial & Engineering Chemistry Research, 2010, 49, 2600-2607.	3.7	9
475	Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 483-494.	4.3	87
476	Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl acetate. Studies in Surface Science and Catalysis, 2010, , 283-287.	1.5	3
477	Catalytic pyrolysis of woody biomass. Biofuels, 2010, 1, 261-273.	2.4	14
478	Catalysts based on platinum–tin and platinum–gallium in close contact for the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2009, 263, 146-154.	6.2	46
479	Transforming Triglycerides and Fatty Acids into Biofuels. ChemSusChem, 2009, 2, 1109-1119.	6.8	232
480	Reaction Kinetics and Mechanism of Sulfuric Acidâ€Catalyzed Acetolysis of Acylated Methyl <scp>L</scp> â€Ribofuranosides. European Journal of Organic Chemistry, 2009, 2009, 5666-5676.	2.4	10
481	Reaction kinetics and mechanism of acid-catalyzed anomerization of 1-O-acetyl-2,3,5-tri-O-benzoyl-l-ribofuranose. Carbohydrate Research, 2009, 344, 1102-1109.	2.3	9
482	Synthesis of peroxypropionic acid from propionic acid and hydrogen peroxide over heterogeneous catalysts. Chemical Engineering Journal, 2009, 147, 323-329.	12.7	22
483	Kinetics of the biofuels-assisted SCR of NOx over Ag/alumina-coated microchannels. Chemical Engineering Journal, 2009, 154, 34-44.	12.7	15
484	Catalytic Deoxygenation of Stearic Acid and Palmitic Acid in Semibatch Mode. Catalysis Letters, 2009, 130, 48-51.	2.6	110
485	Size dependent interface energy and catalytic kinetics on non-ideal surfaces. Reaction Kinetics and Catalysis Letters, 2009, 97, 165-171.	0.6	11
486	Kinetics of liquid-phase benzene hydrogenation on Rh/C. Research on Chemical Intermediates, 2009, 35, 1-11.	2.7	6

#	Article	IF	CITATIONS
487	Lactose oxidation over palladium catalysts supported on active carbons and on carbon nanofibres. Research on Chemical Intermediates, 2009, 35, 155-174.	2.7	14
488	DRIFT, XPS and XAS Investigation of Au–Ni/Al2O3 Synergetic Catalyst for Allylbenzene Isomerization. Topics in Catalysis, 2009, 52, 344-350.	2.8	30
489	X-Ray Photoelectron Spectroscopy Investigation of Pd-Beta Zeolite Catalysts with Different Acidities. Topics in Catalysis, 2009, 52, 359-379.	2.8	9
490	Synthesis of Ru-modified MCM-41 Mesoporous Material, Y and Beta Zeolite Catalysts for Ring Opening of Decalin. Topics in Catalysis, 2009, 52, 380-386.	2.8	17
491	Interplay Between the Active Phase and Support: Preparation, Characterization and Catalytic Performance. Topics in Catalysis, 2009, 52, 333-333.	2.8	3
492	Selective Catalytic Reduction of NO x Over Nano-Sized Gold Catalysts Supported on Alumina and Titania and Over Bimetallic Gold–Silver Catalysts Supported on Alumina. Topics in Catalysis, 2009, 52, 1762-1765.	2.8	15
493	Ring-opening of decalin – Kinetic modelling. Fuel, 2009, 88, 366-373.	6.4	26
494	Application of linear free-energy relationships to perhydrolysis of different carboxylic acids over homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A, 2009, 303, 148-155.	4.8	20
495	Describing the inverse dependence of hydrogen pressure by multi-site adsorption of the reactant: Hydrogenolysis of hydroxymatairesinol on a Pd/C catalyst. Journal of Molecular Catalysis A, 2009, 306, 33-39.	4.8	26
496	One-pot utilization of heterogeneous and enzymatic catalysis: Synthesis of R-1-phenylethyl acetate from acetophenone. Catalysis Today, 2009, 140, 70-73.	4.4	17
497	Experimental and modelling aspects in microstructured reactors applied to environmental catalysis. Catalysis Today, 2009, 147, S149-S155.	4.4	11
498	Kinetics, catalyst deactivation and modeling in the hydrogenation of \hat{l}^2 -sitosterol to \hat{l}^2 -sitostanol over microporous and mesoporous carbon supported Pd catalysts. Chemical Engineering Journal, 2009, 154, 45-51.	12.7	29
499	Kinetics of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst. Chemical Engineering Journal, 2009, 154, 52-59.	12.7	89
500	Modelling of enantioselective and racemic hydrogenation of ethyl pyruvate on a Pt/Al2O3 catalyst in the presence of microwave irradiation. Chemical Engineering and Processing: Process Intensification, 2009, 48, 837-845.	3.6	11
501	Thermodynamic analysis of nanoparticle size effect on catalytic kinetics. Chemical Engineering Science, 2009, 64, 1046-1052.	3.8	78
502	Interaction of intrinsic kinetics and internal mass transfer in porous ion-exchange catalysts: Green synthesis of peroxycarboxylic acids. Chemical Engineering Science, 2009, 64, 4101-4114.	3.8	29
503	Modeling of kinetics and stereoselectivity in liquid-phase α-pinene hydrogenation over Pd/C. Applied Catalysis A: General, 2009, 356, 216-224.	4.3	48
504	Pd/H-Beta catalysts: Characterization and reactivity in piperonyl alcohol selective oxidation. Applied Catalysis A: General, 2009, 359, 144-150.	4.3	10

#	Article	IF	CITATIONS
505	Kinetic behaviour of HC-SCR over Ag/alumina catalyst using a model paraffinic second generation biodiesel compound. Applied Catalysis B: Environmental, 2009, 90, 603-612.	20.2	22
506	Kinetics of linoleic acid hydrogenation on Pd/C catalyst. Applied Catalysis A: General, 2009, 353, 166-180.	4.3	22
507	Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Applied Catalysis A: General, 2009, 355, 100-108.	4.3	209
508	Hydroformylation of 1-Butene on Rh Catalyst. Industrial & Engineering Chemistry Research, 2009, 48, 1325-1331.	3.7	3
509	Overview of catalytic methods for production of next generation biodiesel from natural oils and fats. Russian Journal of Physical Chemistry B, 2009, 3, 1035-1043.	1.3	50
510	Decalin ring opening reactions on ruthenium-containing zeolite MCM-41. Petroleum Chemistry, 2009, 49, 90-93.	1.4	9
511	Lactose oxidation kinetics with oxygen in catalyst-solution-gas three-phase system with simultaneous electrical potential measurement of supported gold catalyst. Russian Journal of Electrochemistry, 2009, 45, 1017-1026.	0.9	10
512	Confined But-2-ene Catalytic Isomerization Inside H-ZSM-5 Models: A DFT Study. Journal of Chemical Theory and Computation, 2009, 5, 1274-1283.	5.3	15
513	A Novel Method of Quantifying the u-Shaped Pores in SBA-15. Journal of Physical Chemistry C, 2009, 113, 20349-20354.	3.1	10
514	Experimental and Theoretical Analysis of Asymmetric Induction in Heterogeneous Catalysis: Diastereoselective Hydrogenation of Chiral 1±-Hydroxyketones over Pt Catalyst. Journal of the American Chemical Society, 2009, 131, 4449-4462.	13.7	18
515	Catalytic Deoxygenation of Stearic Acid in a Continuous Reactor over a Mesoporous Carbon-Supported Pd Catalyst. Energy & Energy & 23, 3842-3845.	5.1	123
516	NMR and molecular modeling of the dimeric self-association of the enantiomers of $1,1\hat{a}\in^2$ -bi-2-naphthol and 1-phenyl-2,2,2-trifluoroethanol in the solution state and their relevance to enantiomer self-disproportionation on achiral-phase chromatography (ESDAC). Organic and Biomolecular Chemistry, 2009, 7, 537-542.	2.8	48
517	Sustainable chemical technology through catalytic multistep reactions. Chemical Engineering Research and Design, 2008, 86, 1002-1010.	5.6	20
518	Synthesis of Biodiesel via Deoxygenation of Stearic Acid over Supported Pd/C Catalyst. Catalysis Letters, 2008, 122, 247-251.	2.6	114
519	Influence of Reaction Parameters on the Hydrogenolysis of Hydroxymatairesinol Over Carbon Nanofibre Supported Palladium Catalysts. Catalysis Letters, 2008, 125, 8-13.	2.6	13
520	Utilization of cascade chemo-bio catalysis for the synthesis of R-1-phenylethyl acetate. Reaction Kinetics and Catalysis Letters, 2008, 94, 281-288.	0.6	6
521	Thermal Polymerisation and Autoxidation of Technical Grade Linoleic Acid. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 567-572.	1.9	4
522	Kinetic aspects of stereoselectivity in hydrogenation of fatty acids. Journal of Molecular Catalysis A, 2008, 286, 156-161.	4.8	11

#	Article	IF	Citations
523	Quantification of rate acceleration in asymmetric catalytic hydrogenation. Journal of Molecular Catalysis A, 2008, 289, 91-94.	4.8	12
524	d-Lactose oxidation over gold catalysts. Catalysis Today, 2008, 131, 385-392.	4.4	65
525	Microreactors for environmental catalysisâ€"Selective catalytic reduction of NOX with hydrocarbons over a Ag/alumina catalyst. Catalysis Today, 2008, 133-135, 448-454.	4.4	8
526	Skeletal isomerization of 1-butene: A thorough kinetic study over ZSM-22. Catalysis Today, 2008, 133-135, 762-769.	4.4	5
527	Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Applied Catalysis A: General, 2008, 345, 201-212.	4.3	32
528	One-pot chemo-biocatalytic synthesis of R-1-phenylethyl acetate from acetophenone hydrogenation over Pd/Al2O3 catalyst. Applied Catalysis A: General, 2008, 350, 24-29.	4.3	10
529	Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel, 2008, 87, 933-945.	6.4	313
530	Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel, 2008, 87, 2493-2501.	6.4	404
531	Continuous decarboxylation of lauric acid over Pd/C catalyst. Fuel, 2008, 87, 3543-3549.	6.4	129
532	Influence of surface acidity in lactose oxidation over supported Pd catalysts. Microporous and Mesoporous Materials, 2008, 113, 122-131.	4.4	19
533	Cascade approach for synthesis of R-1-phenyl ethyl acetate from acetophenone: Effect of support. Journal of Molecular Catalysis A, 2008, 285, 132-141.	4.8	23
534	On Langmuir kinetics and zero order reactions. Catalysis Communications, 2008, 9, 1815-1816.	3.3	25
535	Skeletal Isomerization of Butene in Fixed Beds. Part 2. Kinetic and Flow Modeling. Industrial & Engineering Chemistry Research, 2008, 47, 5413-5426.	3.7	9
536	Radioactive 11C-methyl labeling for study of methanol co-reaction with methyl iodide on Fe-Beta zeolite. Studies in Surface Science and Catalysis, 2008, 174, 1095-1098.	1.5	1
537	Kinetic Modeling of Propene Hydroformylation with Rh/TPP and Rh/CHDPP Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 4317-4324.	3.7	21
538	Acyl Group Migration and Cleavage in Selectively Protected \hat{l}^2 - <scp>d</scp> -Galactopyranosides as Studied by NMR Spectroscopy and Kinetic Calculations. Journal of the American Chemical Society, 2008, 130, 8769-8772.	13.7	77
539	Hydrogenation of Vegetable Oils over Pd on Nanocomposite Carbon Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 7219-7225.	3.7	57
540	Intrinsic Metal Size Effect on Adsorption of Organic Molecules on Platinum. Journal of Physical Chemistry C, 2008, 112, 6822-6831.	3.1	17

#	Article	IF	Citations
541	A Combined NMR, DFT, and X-ray Investigation of Some Cinchona Alkaloid O-Ethers. Journal of Organic Chemistry, 2008, 73, 6559-6569.	3.2	24
542	Dissolution of Mineral Fiber in a Formic Acid Solution: Kinetics, Modeling, and Gelation of the Resulting Sol. Industrial & Engineering Chemistry Research, 2008, 47, 9834-9841.	3.7	7
543	Kinetic Study and Modeling of Peroxypropionic Acid Synthesis from Propionic Acid and Hydrogen Peroxide Using Homogeneous Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 656-664.	3.7	28
544	Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis, 2008, 174, 1069-1074.	1.5	18
545	Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor. International Journal of Molecular Sciences, 2008, 9, 1665-1675.	4.1	57
546	Classification and pattern recognition of acyclic octenes based on mass spectra. Talanta, 2007, 72, 1573-1580.	5.5	3
547	Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes. Catalysis Reviews - Science and Engineering, 2007, 49, 197-340.	12.9	250
548	Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chemistry, 2007, 9, 1229.	9.0	126
549	Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles. Chemical Research in Toxicology, 2007, 20, 1913-1918.	3.3	129
550	Interaction of Cinchonidine and 1-Phenyl-1,2-Propanedione on the Surface of a Chirally Modified Pt/Al2O3Hydrogenation Catalyst. Journal of Physical Chemistry C, 2007, 111, 9374-9383.	3.1	11
551	Modelling of Consecutive Reactions with a Semibatch Liquid Phase:Â Enhanced Kinetic Information by a New Experimental Concept. Industrial & Engineering Chemistry Research, 2007, 46, 3912-3921.	3.7	6
552	The Role of Modifier Structure in Heterogeneous Enantioselective Hydrogenation:  One-to-One Interactions of 1-Phenyl-1,2-propanedione and Methyl Pyruvate with Modifiers on the Pt(111) Surface. Journal of Physical Chemistry C, 2007, 111, 5128-5140.	3.1	25
553	Preparation of dimethoxyborane and analysis by Fourier transform infrared spectroscopy. Research on Chemical Intermediates, 2007, 33, 645-654.	2.7	3
554	Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy & Ener	5.1	315
555	Evaluation of Mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 Materials as API Carriers for Oral Drug Delivery, 2007, 14, 337-347.	5.7	169
556	Pt-modified MCM-22. ZSM-5 and Beta Zeolite Catalfsts for n-Butane Isomerization: Influence of Structure, Acidity and Pt Modification. Studies in Surface Science and Catalysis, 2007, 172, 153-156.	1.5	0
557	Probing Surface Cowerage by in situ Catalyst Potential Measurements. Studies in Surface Science and Catalysis, 2007, , 393-396.	1.5	1
558	Synthesis of Pt modified ZSM-5 and beta zeolite catalysts: Influence of ultrasonic irradiation and preparation methods on physico-chemical and catalytic properties in pentane isomerization. Ultrasonics Sonochemistry, 2007, 14, 122-130.	8.2	39

#	Article	IF	CITATIONS
559	Conformational equilibria of citral. Computational and Theoretical Chemistry, 2007, 814, 33-41.	1.5	25
560	Hydrogenolysis of a wood extractive to an anticarcinogenic and antioxidative compound. Catalysis Today, 2007, 121, 100-105.	4.4	7
561	From renewable raw materials to high value-added fine chemicalsâ€"Catalytic hydrogenation and oxidation of d-lactose. Catalysis Today, 2007, 121, 92-99.	4.4	73
562	Ethyl pyruvate hydrogenation under microwave irradiation. Chemical Engineering Journal, 2007, 126, 103-109.	12.7	17
563	Application of in situ catalyst potential measurements for estimation of reaction performance: Lactose oxidation over Au and Pd catalysts. Chemical Engineering Journal, 2007, 134, 153-161.	12.7	41
564	Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation. Chemical Engineering Journal, 2007, 134, 29-34.	12.7	160
565	The development of the method of low-temperature peat pyrolysis on the basis of alumosilicate catalytic system. Chemical Engineering Journal, 2007, 134, 162-167.	12.7	24
566	Enhancement of solid dissolution by ultrasound. Chemical Engineering and Processing: Process Intensification, 2007, 46, 862-869.	3.6	35
567	Thermodynamic consistency of complex enzymatic reactions with empty routes. Chemical Engineering Science, 2007, 62, 6492-6494.	3.8	4
568	Thermal and catalytic oligomerisation of fatty acids. Applied Catalysis A: General, 2007, 330, 1-11.	4.3	33
569	Mesoporous silica material TUD-1 as a drug delivery system. International Journal of Pharmaceutics, 2007, 331, 133-138.	5.2	202
570	On the mutual interactions between noble metal crystallites and zeolitic supports and their impacts on catalysis. Journal of Molecular Catalysis A, 2007, 264, 192-201.	4.8	23
571	Dehydrogenation of hydroxymatairesinol to oxomatairesinol over carbon nanofibre-supported palladium catalysts. Journal of Molecular Catalysis A, 2007, 274, 42-49.	4.8	31
572	Letter to the Editor Journal of Catalysis - Volume 251, Issue 1. Journal of Catalysis, 2007, 251, 244-245.	6.2	10
573	Catalytic pyrolysis of low density polyethylene over H-β, H-Y, H-Mordenite, and H-Ferrierite zeolite catalysts: Influence of acidity and structures. Kinetics and Catalysis, 2007, 48, 535-540.	1.0	45
574	Revealing regioselectivity in hydrogenation of 1-phenyl-1,2-propanedione on Pt catalysts. Journal of Catalysis, 2007, 245, 228-236.	6.2	22
575	Hydrogen as a remedy for the detrimental effect of aromatic and cyclic compounds on the HC-SCR over Ag/alumina. Applied Catalysis B: Environmental, 2007, 70, 65-72.	20.2	42
576	A combination of Ag/alumina and Ag modified ZSM-5 to remove NOx and CO during lean conditions. Applied Catalysis B: Environmental, 2007, 70, 138-145.	20.2	21

#	Article	IF	CITATIONS
577	Catalytic Pyrolysis of Biomass in a Fluidized Bed Reactor. Chemical Engineering Research and Design, 2007, 85, 473-480.	5.6	137
578	Selective catalytic reduction of NO x over Ag/Al2O3 using various bio-diesels as reducing agents. Topics in Catalysis, 2007, 42-43, 399-403.	2.8	18
579	Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina, H-ZSM-5 and Cu-ZSM-5. Topics in Catalysis, 2007, 45, 169-173.	2.8	4
580	A study on the dimerization of 1-butene over Beta zeolite. Topics in Catalysis, 2007, 45, 187-190.	2.8	16
581	Multitubular reactor design as an advanced screening tool for three-phase catalytic reactions. Topics in Catalysis, 2007, 45, 223-227.	2.8	9
582	Reaction kinetics and modelling of the gold catalysed glycerol oxidation. Topics in Catalysis, 2007, 44, 299-305.	2.8	66
583	Nanocatalysis in asymmetric hydrogenation. Reaction Kinetics and Catalysis Letters, 2007, 90, 19-25.	0.6	20
584	On the topological representation of catalytic cycles with nonlinear steps. Reaction Kinetics and Catalysis Letters, 2007, 90, 225-232.	0.6	6
585	On the validity of Langmuir adsorption on supported nanoparticles. Reaction Kinetics and Catalysis Letters, 2007, 91, 37-43.	0.6	10
586	On selectivity of catalytic reactions with multi-centered adsorption. Reaction Kinetics and Catalysis Letters, 2007, 91, 141-147.	0.6	3
587	The influence of acidity of carbon nanofibre-supported palladium catalysts in the hydrogenolysis of hydroxymatairesinol. Catalysis Letters, 2007, 113, 141-146.	2.6	22
588	Radioisotopic tracing of methanol transformation using 11C-labelled methanol over copper ion-exchanged H-ZSM-5, H-Beta and H-MCM-41. Catalysis Letters, 2007, 114, 17-23.	2.6	6
589	Hydrogenation of 1,2-indanedione over heterogeneous cinchonidine-modified platinum catalysts. Catalysis Letters, 2007, 117, 91-98.	2.6	9
590	Ag-modified H-Beta, H-MCM-41 and SiO2: Influence of support, acidity and Ag content in ozone decomposition at ambient temperature. Catalysis Today, 2007, 119, 342-346.	4.4	26
591	Enhancing consecutive reactions during three phase hydrogenation with a semibatch liquid phase. Chemical Engineering Journal, 2007, 134, 268-275.	12.7	4
592	Supported ionic liquidscatalysts for fine chemicals: citral hydrogenation. Green Chemistry, 2006, 8, 197-205.	9.0	83
593	Dynamic Modeling of Catalyst Deactivation in Fixed-Bed Reactors:Â Skeletal Isomerization of 1-Pentene on Ferrierite. Industrial & Engineering Chemistry Research, 2006, 45, 558-566.	3.7	10
594	Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Industrial & Engineering Chemistry Research, 2006, 45, 5708-5715.	3.7	577

#	Article	IF	Citations
595	Novel Nano Catalysts on the Base of Hyper-crosslinked Polystyrene for Carbohydrates Oxidation. Studies in Surface Science and Catalysis, 2006, , 119-126.	1.5	7
596	Supported Ionic Liquid Catalyst (SILCA) in the Hydrogenation of Citral. Studies in Surface Science and Catalysis, 2006, , 87-94.	1.5	7
597	Toward Improved Catalytic Low-Temperature NOx Removal in Diesel-Powered Vehicles. Accounts of Chemical Research, 2006, 39, 273-282.	15.6	124
598	Modeling and Scale-up of Sitosterol Hydrogenation Process:Â From Laboratory Slurry Reactor to Plant Scale. Industrial & Engineering Chemistry Research, 2006, 45, 7067-7076.	3.7	17
599	Structureâ^Activity Relationship in HC-SCR of NOxby TEM, O2-Chemisorption, and EDXS Study of Ag/Al2O3. Journal of Physical Chemistry B, 2006, 110, 420-427.	2.6	33
600	Metalâ^'Support Interactions in Zeolite-Supported Noble Metals:Â Influence of Metal Crystallites on the Support Acidity. Journal of Physical Chemistry B, 2006, 110, 4937-4946.	2.6	127
601	Reply to "Comment on â€~Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel'― Industrial & Engineering Chemistry Research, 2006, 45, 6875-6875.	3.7	16
602	Platinum group metals as catalysts in enantioselective 1-phenylpropane-1,2-dione hydrogenation. Applied Catalysis A: General, 2006, 300, 147-154.	4.3	24
603	Kinetic considerations of H2 assisted hydrocarbon selective catalytic reduction of NO over Ag/Al2O3. Applied Catalysis A: General, 2006, 304, 86-92.	4.3	22
604	Cyclic voltammetry as a tool for characterization of supported VIII group metal catalysts. Applied Catalysis A: General, 2006, 309, 52-61.	4.3	3
605	Suppression of catalyst deactivation by means of acoustic irradiation—Application on fine and specialty chemicals. Chemical Engineering Journal, 2006, 120, 91-98.	12.7	5
606	Inverse temperature dependence due to catalyst deactivation in liquid phase citral hydrogenation over Pt/Al2O3. Chemical Engineering Journal, 2006, 122, 127-134.	12.7	21
607	Interaction of kinetics and internal diffusion in complex catalytic three-phase reactions: Activity and selectivity in citral hydrogenation. Chemical Engineering Science, 2006, 61, 814-822.	3.8	23
608	An integrated dynamic model for reaction kinetics and catalyst deactivation in fixed bed reactors: skeletal isomerization of 1-pentene over ferrierite. Chemical Engineering Science, 2006, 61, 1157-1166.	3.8	9
609	Solubility of gases in a hydroformylation solvent. Chemical Engineering Science, 2006, 61, 3698-3704.	3.8	15
610	Kinetic behaviour of electrochemical potential in three-phase heterogeneous catalytic oxidation reactions. Journal of Molecular Catalysis A, 2006, 255, 199-208.	4.8	25
611	Effect of ultrasound in enantioselective hydrogenation of 1-phenyl-1,2-propanedione: comparison of catalyst activation, solvents and supports. Ultrasonics Sonochemistry, 2006, 13, 68-75.	8.2	27
612	High-selectivity hydrogenation of cinnamaldehyde over platinum supported on aluminosilicates. Research on Chemical Intermediates, 2006, 32, 795-816.	2.7	5

#	Article	IF	Citations
613	Optimum catalyst for two-step heterogeneous catalytic reactions with multi-centered adsorption. Reaction Kinetics and Catalysis Letters, 2006, 89, 89-96.	0.6	1
614	Heterogeneous photocatalytic kinetics: beyond the adsorption/desorption equilibrium concept. Reaction Kinetics and Catalysis Letters, 2006, 89, 277-284.	0.6	17
615	Kinetic Aspects of Nonlinear Phenomena in Heterogeneous Enantioselective Catalysis. Catalysis Letters, 2006, 109, 125-131.	2.6	11
616	Kinetic considerations of H2 assisted hydrocarbon selective catalytic reduction of NO over Ag/Al2O3. Applied Catalysis A: General, 2006, 303, 96-102.	4.3	31
617	Isomerization of n-butane to isobutane over Pt-modified Beta and ZSM-5 zeolite catalysts: Catalyst deactivation and regeneration. Chemical Engineering Journal, 2006, 120, 83-89.	12.7	40
618	Reactions of hydroxymatairesinol over supported palladium catalysts. Journal of Catalysis, 2006, 238, 301-308.	6.2	18
619	Origin of ligand acceleration in heterogeneous ethyl pyruvate hydrogenation. Journal of Catalysis, 2006, 241, 96-102.	6.2	32
620	An investigation of a new regeneration method of commercial aged three-way catalysts. Applied Catalysis B: Environmental, 2006, 65, 93-100.	20.2	41
621	Thermodynamic analysis of reaction schemes with empty routes. AICHE Journal, 2006, 52, 4273-4275.	3.6	5
622	Synthesis of Pt-modified MCM-41 mesoporous molecular sieve catalysts: influence of methods of Pt introduction in MCM-41 on physico-chemical and catalytic properties for ring opening of decalin. Studies in Surface Science and Catalysis, 2006, , 401-408.	1.5	6
623	Analysis of the State and Size of Silver on Alumina in Effective Removal of NO _{<i>x</i>} from Oxygen Rich Exhaust Gas. Journal of Nanoscience and Nanotechnology, 2006, 6, 1076-1083.	0.9	4
624	One-pot citral transformation to menthol over bifunctional micro- and mesoporous metal modified catalysts: Effect of catalyst support and metal. Journal of Molecular Catalysis A, 2005, , .	4.8	11
625	Proton affinities of ketones, vicinal diketones and \hat{l}_{\pm} -keto esters: a computational study. Tetrahedron, 2005, 61, 8109-8119.	1.9	16
626	HC-SCR of NOx over Ag/alumina: a combination of heterogeneous and homogeneous radical reactions?. Catalysis Today, 2005, 100, 229-236.	4.4	14
627	Isomerization of n-butane to isobutane over Pt-SAPO-5, SAPO-5, Pt-H-mordenite and H-mordenite catalysts. Catalysis Today, 2005, 100, 355-361.	4.4	27
628	Mechanism of the skeletal isomerisation of linear butenes over ferrierite: analysis of side reactions. Catalysis Today, 2005, 100, 363-366.	4.4	9
629	11C-radioisotope labeled methanol conversion over H- and Cs- modified ZSM-5, Beta zeolites and MCM-41 mesoporous molecular sieve. Catalysis Today, 2005, 100, 379-383.	4.4	3
630	The interaction of butenes with Cu+ ions in CuMCM-41 studied by IR spectroscopy. Catalysis Today, 2005, 100, 407-412.	4.4	5

#	Article	IF	CITATIONS
631	Liquid-phase hydrogenation of diethylbenzenes. Catalysis Today, 2005, 100, 453-456.	4.4	1
632	Short overview on the application of metal-modified molecular sieves in selective hydrogenation of cinnamaldehyde. Catalysis Today, 2005, 100, 349-353.	4.4	9
633	Structured but not over-structured: Woven active carbon fibre matt catalyst. Catalysis Today, 2005, 105, 325-330.	4.4	17
634	Improved kinetic data from analysis of complex hydrocarbon mixtures by using SIMCA. Analytica Chimica Acta, 2005, 537, 339-348.	5.4	12
635	Kinetics of NO reduction over Ag/alumina by higher hydrocarbon in excess of oxygen. Chemical Engineering Journal, 2005, 107, 215-220.	12.7	28
636	Esterification of propanoic acid with ethanol, 1-propanol and butanol over a heterogeneous fiber catalyst. Chemical Engineering Journal, 2005, 115, 1-12.	12.7	43
637	Linoleic acid isomerization on Ru/Al2O3 catalyst. Chemical Engineering Journal, 2005, 115, 13-22.	12.7	18
638	Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: Kinetic modeling. Chemical Engineering Science, 2005, 60, 5682-5695.	3.8	105
639	Catalytic reduction of NO by H2 over Ag/Al2O3 under dry reducing conditions. Applied Catalysis A: General, 2005, 294, 49-58.	4.3	7
640	Asymmetric Heterogeneous Catalysis: Science and Engineering. Catalysis Reviews - Science and Engineering, 2005, 47, 175-256.	12.9	231
641	Stabilities of C3–C5 alkoxide species inside H-FER zeolite: a hybrid QM/MM study. Journal of Catalysis, 2005, 231, 393-404.	6.2	91
642	Mathematical modeling of o-xylene hydrogenation kinetics over Pd/Al2O3. Journal of Catalysis, 2005, 233, 109-118.	6.2	20
643	Synthesis of Chiral Catalyst Modifiers by Hydrosilylation of Cinchonidine and Their Application in the Hydrogenation of 1-Phenylpropane-1,2-dione and Ethyl Pyruvate on a Supported Pt/Al2O3 Catalyst. European Journal of Organic Chemistry, 2005, 2005, 2811-2821.	2.4	25
644	Effect of modifier structure in asymmetric 1-phenylpropane-1,2-dione hydrogenation. Journal of Molecular Catalysis A, 2005, 236, 227-238.	4.8	25
645	Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions. Applied Catalysis A: General, 2005, 279, 1-22.	4.3	60
646	A highly stable and selective Pt-modified mordenite catalyst for the skeletal isomerization of n-butane. Applied Catalysis A: General, 2005, 284, 223-230.	4.3	13
647	Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292, 1-49.	4.3	557
648	Esterification of propionic acid under microwave irradiation over an ion-exchange resin. Catalysis Today, 2005, 100, 431-435.	4.4	37

#	Article	IF	Citations
649	Ab initio study of solvent effects on reactant–modifier complexes in enantioselective hydrogenation. Catalysis Today, 2005, 100, 373-377.	4.4	15
650	Novel woven active carbon fiber catalyst in the hydrogenation of citral. Catalysis Today, 2005, 102-103, 128-132.	4.4	13
651	Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catalysis Today, 2005, 106, 197-200.	4.4	351
652	Modelling of H/D exchange over Pd. Chemical Engineering Journal, 2005, 107, 89-95.	12.7	5
653	Linoleic acid isomerization on Ru/Al2O3 catalyst. Chemical Engineering Journal, 2005, 115, 23-43.	12.7	10
654	The selective sorption of solvents on sulphonic acid polymer catalyst in binary mixtures. Reactive and Functional Polymers, 2005, 64, 111-118.	4.1	7
655	Hydrogenolysis of Hydroxymatairesinol Over Carbon-Supported Palladium Catalysts. Catalysis Letters, 2005, 103, 125-131.	2.6	35
656	Engineering HC-SCR: Improved Low Temperature Performance through a Cascade Concept. Catalysis Letters, 2005, 105, 133-138.	2.6	16
657	Catalyst Deactivation in Diborane Decomposition. Catalysis Letters, 2005, 105, 191-202.	2.6	29
658	Enzymatic kinetics., 2005, , 189-224.		17
659	Ring opening of decalin over Pt-and Ir-modified SAPO-5 and VPI-5 zeolite catalysts. Studies in Surface Science and Catalysis, 2005, 158, 1669-1676.	1.5	6
660	One-pot synthesis of menthol from citral over bifunctional Ni modified micro- and mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, 158, 1311-1318.	1.5	2
661	An integrated approach to modelling of chemical transformations in chemical reactors. Computer Aided Chemical Engineering, 2005, 20, 1531-1536.	0.5	1
662	Hydrogenation of Citral Over Ni on Monolith. International Journal of Chemical Reactor Engineering, 2005, 3, .	1.1	0
663	On Surface Heterogeneity and Catalytic Kinetics. Industrial & Engineering Chemistry Research, 2005, 44, 1688-1697.	3.7	30
664	Hydrogenation of Citral over Activated Carbon Cloth Catalystâ€. Industrial & Engineering Chemistry Research, 2005, 44, 5285-5290.	3.7	21
665	Selectivity Enhancement by Catalyst Deactivation in Three-Phase Hydrogenation of Nerol. Industrial & Lamp; Engineering Chemistry Research, 2005, 44, 9376-9383.	3.7	7
666	Kinetic Study ofn-Butane Isomerization over Ptâ^'H-Mordenite. Industrial & Engineering Chemistry Research, 2005, 44, 471-484.	3.7	35

#	Article	IF	CITATIONS
667	Effect of Ultrasound on Catalytic Hydrogenation ofd-Fructose tod-Mannitol. Industrial & Engineering Chemistry Research, 2005, 44, 9370-9375.	3.7	32
668	Isomerization of n-butane over Pt-modified mordenite zeolite catalysts: effect of Pt loadings and dealumination. Studies in Surface Science and Catalysis, 2005, 158, 1859-1866.	1.5	5
669	Gas-phase hydrogenation of 4-tert-butylphenol over Pt/SiO2. Journal of Catalysis, 2004, 227, 60-67.	6.2	9
670	Asymmetric hydrogenation of 1-phenylpropane-1,2-dione over cinchona-modified Pt: Role of the C-9 OH group of cinchonidine. Journal of Catalysis, 2004, 227, 210-216.	6.2	31
671	Ring opening of decalin over zeolitesII. Activity and selectivity of platinum-modified zeolites. Journal of Catalysis, 2004, 227, 313-327.	6.2	123
672	On the mechanism of the selective catalytic reduction of NO with higher hydrocarbons over a silver/alumina catalyst. Journal of Catalysis, 2004, 227, 328-343.	6.2	114
673	Silver/Alumina Catalyst for Selective Catalytic Reduction of NO _x to N ₂ by Hydrocarbons in Diesel Powered Vehicles. Topics in Catalysis, 2004, 28, 185-189.	2.8	61
674	Preparation and Characterisation of Ag/Alumina Catalysts for the Removal of NO _x Emissions Under Oxygen Rich Conditions. Topics in Catalysis, 2004, 30/31, 91-95.	2.8	44
675	A Novel Radioisotope Method for Studying Catalytic Transformations over Alumina, H-ZSM-5 and H-Beta Zeolite Catalysts: Investigation of Conversion of11C-Labeled Methanol to11C-Labeled Dimethyl Ether and Hydrocarbons. Catalysis Letters, 2004, 93, 101-107.	2.6	17
676	Effect of Cinchonidine and Dissolved Oxygen in Continuous Enantioselective Hydrogenation of Ethyl Pyruvate. Catalysis Letters, 2004, 93, 171-176.	2.6	21
677	Continuous Enantioselective Hydrogenation of Ethylbenzoylformate over Pt/Al2O3Catalyst: Bed Dilution Effects and Cinchonidine Adsorption Study. Catalysis Letters, 2004, 95, 179-183.	2.6	22
678	The Effect of Chemical Reducing Agents in the Synthesis of Sol-Gel Ru-Sn Catalysts: Selective Hydrogenation of Cinnamaldehyde. Journal of Sol-Gel Science and Technology, 2004, 30, 187-195.	2.4	12
679	Quantification of the oxygen effect in modification of platinum by cinchonidine. Reaction Kinetics and Catalysis Letters, 2004, 81, 129-136.	0.6	1
680	Deactivation in liquid-phase hydrogenation. Reaction Kinetics and Catalysis Letters, 2004, 83, 205-212.	0.6	12
681	Influence of ruthenium precursor on catalytic activity of Ru/Al2O3 catalyst in selective isomerization of linoleic acid to cis-9,trans-11- and trans-10,cis-12-conjugated linoleic acid. Applied Catalysis A: General, 2004, 267, 121-133.	4.3	31
682	Kinetic modelling of a solid–liquid reaction: reduction of ferric iron to ferrous iron with zinc sulphide. Chemical Engineering Science, 2004, 59, 919-930.	3.8	43
683	Synthesis of Novel Ag Modified MCM-41 Mesoporous Molecular Sieve and Beta Zeolite Catalysts for Ozone Decomposition at Ambient Temperature. Catalysis Letters, 2004, 98, 57-60.	2.6	27
684	Support Effects in Nerol Hydrogenation over Pt/SiO2, Pt/H-Y and Pt/H-MCM-41 Catalysts. Catalysis Letters, 2004, 98, 173-179.	2.6	6

#	Article	IF	CITATIONS
685	Hydrogenation of Cinnamaldehyde over Pt-Modified Molecular Sieve Catalysts. Chemical Engineering and Technology, 2004, 27, 1290-1295.	1.5	7
686	Physico-chemical and catalytic properties of Ru–MCM-41 mesoporous molecular sieve catalyst: influence of Ru modification methods. Microporous and Mesoporous Materials, 2004, 69, 173-179.	4.4	27
687	Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite. Journal of Molecular Catalysis A, 2004, 217, 145-154.	4.8	41
688	Deactivation of postcombustion catalysts, a review. Fuel, 2004, 83, 395-408.	6.4	176
689	Reduction of ferric to ferrous with sphalerite concentrate, kinetic modelling. Hydrometallurgy, 2004, 73, 269-282.	4.3	33
690	Ring opening of decalin over zeolitesl. Activity and selectivity of proton-form zeolites. Journal of Catalysis, 2004, 222, 65-79.	6.2	131
691	A combined experimental and theoretical study of 1-phenylpropane-1,2-dione hydrogenation over heterogeneous cinchonidine-modified Pt catalyst. Journal of Catalysis, 2004, 224, 326-339.	6.2	38
692	Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 2004, 225, 155-169.	6.2	93
693	Deactivation in liquid-phase hydrogenation of cinnamaldehyde over alumosilicate-supported ruthenium and platinum catalysts. Chemical Engineering Journal, 2004, 103, 35-43.	12.7	16
694	From a fixed bed Ag–alumina catalyst to a modified reactor design: how to enhance the crucial heterogeneous–homogeneous reactions in HC-SCR. Chemical Engineering Science, 2004, 59, 5277-5282.	3.8	14
695	Isomerization of 1-butene over SAPO-11 catalysts synthesized by varying synthesis time and silica sources. Applied Catalysis A: General, 2004, 259, 227-234.	4.3	30
696	Kinetics and modeling of H2/D2 exchange over Ag/Al2O3. Applied Catalysis A: General, 2004, 273, 303-307.	4.3	9
697	Physico-chemical and catalytic properties of Zr- and Cu–Zr ion-exchanged H-MCM-41. Physical Chemistry Chemical Physics, 2004, 6, 4062-4069.	2.8	12
698	Advanced Kinetic Concepts and Experimental Methods for Catalytic Three-Phase Processes. Industrial & Engineering Chemistry Research, 2004, 43, 4540-4550.	3.7	21
699	Heterogeneous Catalytic Production of Conjugated Linoleic Acid. Organic Process Research and Development, 2004, 8, 341-352.	2.7	27
700	Kinetics of Cyanate Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition in Alkaline Solutions of High Ionic Strength:Â The Catalytic Effect of Bicarbonate. Industrial & Decomposition Industrial & Deco	3.7	2
701	Liquid-Phase Hydrogenation of Cinnamaldehyde over a Ruâ^'Sn Solâ^'Gel Catalyst. 2. Kinetic Modeling. Industrial & Engineering Chemistry Research, 2004, 43, 2039-2048.	3.7	9
702	Liquid-Phase Hydrogenation of Cinnamaldehyde over a Ruâ^'Sn Solâ^'Gel Catalyst. 1. Evaluation of Mass Transfer via a Combined Experimental/Theoretical Approach. Industrial & Engineering Chemistry Research, 2004, 43, 2030-2038.	3.7	34

#	Article	IF	Citations
703	n-Butane isomerization over Pt–H–MCM-41. Catalysis Communications, 2004, 5, 15-19.	3.3	12
704	Ring opening of decalin over zeolitesII. Activity and selectivity of platinum-modified zeolites. Journal of Catalysis, 2004, 227, 313-327.	6.2	82
705	Mechanisms of Asymmetric Heterogeneous Catalysis 1. Kinetics and Catalysis, 2003, 44, 323-333.	1.0	9
706	Title is missing!. Kinetics and Catalysis, 2003, 44, 562-571.	1.0	4
707	Title is missing!. Reaction Kinetics and Catalysis Letters, 2003, 78, 3-10.	0.6	12
708	Modelling of catalyst deactivation in liquid phase reactions: citral hydrogenation on Ru/Al2O3. Reaction Kinetics and Catalysis Letters, 2003, 78, 251-257.	0.6	18
709	Kinetics and modeling of 1-phenyl-1,2-propanedione hydrogenation. Journal of Catalysis, 2003, 213, 7-16.	6.2	45
710	Gas-phase hydrogenation of o-xylene over Pt/alumina catalyst, activity, and stereoselectivity. Journal of Catalysis, 2003, 218, 267-279.	6.2	32
711	Continuous reduction of NO with octane over a silver/alumina catalyst inÂoxygen-rich exhaust gases: combined heterogeneous and surface-mediated homogeneous reactions. Journal of Catalysis, 2003, 219, 25-40.	6.2	79
712	Hydrosilylation of Cinchonidine and 9-O-TMS-Cinchonidine with Triethoxysilane: Application of 11-(Triethoxysilyl)-10,11-dihydrocinchonidine as a Chiral Modifier in the Enantioselective Hydrogenation of 1-Phenylpropane-1,2-dione ChemInform, 2003, 34, no.	0.0	0
713	Mechanisms of Asymmetric Heterogeneous Catalysis. ChemInform, 2003, 34, no.	0.0	0
714	Influence of mass transfer on regio- and enantioselectivity in hydrogenation of 1-phenyl-1,2-propanedione over modified Pt catalysts. Catalysis Today, 2003, 79-80, 189-193.	4.4	11
715	Hydrogenation of 4-tert-butylphenol in a three-phase cocurrent upflow reactor. Catalysis Today, 2003, 79-80, 229-233.	4.4	1
716	Application of transient methods in three-phase catalysis: hydrogenation of a dione in a catalytic plate column. Catalysis Today, 2003, 79-80, 383-389.	4.4	7
717	Isomerization of \hat{l}_{\pm} -pinene over ion-exchanged natural zeolites. Chemical Engineering Journal, 2003, 91, 257-269.	12.7	49
718	Kinetics and modeling of o-xylene hydrogenation over $Pt \hat{I}^3$ -Al2O3 catalyst. Chemical Engineering Journal, 2003, 91, 271-278.	12.7	8
719	Active copper species in 1-butene skeletal isomerization: comparison between copper-modified MCM-41 and beta catalysts. Microporous and Mesoporous Materials, 2003, 60, 159-171.	4.4	35
720	Solvent effects in enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Journal of Molecular Catalysis A, 2003, 192, 135-151.	4.8	64

#	Article	IF	CITATIONS
721	Kinetics and stereoselectivity of o-xylene hydrogenation over Pd/Al2O3. Journal of Molecular Catalysis A, 2003, 193, 237-250.	4.8	17
722	Liquid-phase hydrogenation of citral for production of citronellol: catalyst selection. Applied Catalysis A: General, 2003, 241, 271-288.	4.3	73
723	Isomerization of linoleic acid over supported metal catalysts. Applied Catalysis A: General, 2003, 245, 257-275.	4.3	63
724	XPS analysis of chlorine residues in supported Pt and Pd catalysts with low metal loading. Applied Catalysis A: General, 2003, 247, 283-294.	4.3	55
725	Ruthenium-modified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde. Applied Catalysis A: General, 2003, 251, 385-396.	4.3	80
726	Gas-Phase Hydrogenation of o-Xylene over Pt/Knitted Silica-Fiber Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 3230-3236.	3.7	10
727	Heterogeneously Catalytic Isomerization of Linoleic Acid over Supported Ruthenium Catalysts for Production of Anticarcinogenic Food Constituents. Industrial & Engineering Chemistry Research, 2003, 42, 718-727.	3.7	25
728	Impact of Catalyst Reduction Mode on Selective Hydrogenation of Cinnamaldehyde over Ruâ [^] Sn Solâ [^] Gel Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 295-305.	3.7	26
729	22 Enantiospecific heterogeneous catalysis without a chiral modifier. Studies in Surface Science and Catalysis, 2003, 145, 137-140.	1.5	0
730	Hydrosilylation of cinchonidine and 9-O-TMS-cinchonidine with triethoxysilane: application of 11-(triethoxysilyl)-10,11-dihydrocinchonidine as a chiral modifier in the enantioselective hydrogenation of 1-phenylpropane-1,2-dione. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2605-2612.	1.3	33
731	Conjugation of linoleic acid over a hydrogen pre-activated heterogeneous catalystElectronic supplementary information (ESI) available: XRD measurements. See http://www.rsc.org/suppdata/cc/b2/b201722a/. Chemical Communications, 2002, , 1142-1143.	4.1	21
732	Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft equation. Journal of Molecular Catalysis A, 2002, 182-183, 555-563.	4.8	171
733	Kinetics of esterification of propanoic acid with methanol over a fibrous polymer-supported sulphonic acid catalyst. Applied Catalysis A: General, 2002, 228, 253-267.	4.3	87
734	Effect of synthesis time and mode of stirring on physico-chemical and catalytic properties of ZSM-5 zeolite catalysts. Applied Catalysis A: General, 2002, 235, 113-123.	4.3	47
735	Continuous hydrogenation of 1-phenyl-1,2-propanedione under transient and steady-state conditions: regioselectivity, enantioselectivity and catalyst deactivation. Applied Catalysis A: General, 2002, 235, 125-138.	4.3	27
736	Liquid phase hydrogenation of citral: suppression of side reactions. Applied Catalysis A: General, 2002, 237, 181-200.	4.3	78
737	Analysis of deactivation and selectivity pattern in catalytic hydrogenation of a molecule with different functional groups: crotonaldehyde hydrogenation on Pt/SnO2. Chemical Engineering Science, 2002, 57, 2519-2529.	3.8	23
738	Kinetics of catalytic reactions with two types of sites: nonuniform surfaces. Chemical Engineering Science, 2002, 57, 1299-1306.	3.8	8

#	Article	IF	CITATIONS
739	Investigation of NO Reduction by H2 on Pd Monolith with Transient and Isotopic Exchange Techniques I. H2/D2 Exchange with H2O and NH3. Journal of Catalysis, 2002, 210, 17-29.	6.2	8
740	Investigation of NO Reduction by H2 on Pd Monolith with Transient and Isotopic Exchange Techniques II. H2/D2 Exchange in the Reduction of NO. Journal of Catalysis, 2002, 210, 30-38.	6.2	14
741	A New Heterogeneously Catalytic Pathway for Isomerization of Linoleic Acid over Ru/C and Ni/H–MCM-41 Catalysts. Journal of Catalysis, 2002, 210, 354-366.	6.2	62
742	Effect of modifier structure in the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Reaction Kinetics and Catalysis Letters, 2002, 75, 21-30.	0.6	13
743	Title is missing!. Catalysis Letters, 2002, 78, 105-110.	2.6	24
744	Influence of catalyst pretreatment on & agr;-pinene isomerization over natural clays. Reaction Kinetics and Catalysis Letters, 2002, 75, 231-237.	0.6	17
745	Kinetic equation for reversible heterogeneous catalytic reactions. Reaction Kinetics and Catalysis Letters, 2002, 76, 369-374.	0.6	1
746	Hydrogenation of Citral Over a Polymer Fibre Catalyst. Catalysis Letters, 2002, 84, 219-224.	2.6	31
747	Ruthenium-tin sol-gel catalysts: effect of the preparation and tin precursor influence. Research on Chemical Intermediates, 2002, 28, 561-573.	2.7	0
748	A New Polymer Based Catalytic Matreial for Liquid Phase Reactions. Chemie-Ingenieur-Technik, 2001, 73, 618-618.	0.8	2
749	Kinetics of Methane Catalytic Combustion on Mn Substituted Barium Hexa-Aluminates Catalysts. Chemie-Ingenieur-Technik, 2001, 73, 665-665.	0.8	O
750	Selectivity in Hydrogenation of Crotonaldehyde on Pt/SnO2. Influence of Pretreatment. Chemie-Ingenieur-Technik, 2001, 73, 692-692.	0.8	0
751	Kinetics and Modelling of Solvent Effects and Product Distribution in Complex Enantioselective Hydrogenation. Chemie-Ingenieur-Technik, 2001, 73, 692-692.	0.8	O
752	Kinetics of Methane Catalytic Combustion on Mn-Substituted Barium Hexaaluminate Catalysts. Chemical Engineering and Technology, 2001, 24, 1301-1307.	1.5	2
7 53	Enantioselective Hydrogenation of 1-Phenyl-1,2-propanedione. Journal of Catalysis, 2001, 204, 281-291.	6.2	67
754	Ultrasonic Irradiation in Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione. Reaction Kinetics and Catalysis Letters, 2001, 73, 3-11.	0.6	6
755	A kinetic treatment of the gas phase hydrodechlorination of chlorobenzene over nickel/silica: beyond conventional kinetics. Chemical Engineering Science, 2001, 56, 3185-3195.	3.8	60
756	Gas-phase hydrogenation of ethylbenzene over Ni Applied Catalysis A: General, 2000, 201, 55-59.	4.3	16

#	Article	IF	CITATIONS
757	Kinetics of \hat{l}_{\pm} -pinene enantiomeric isomerization over clinoptilolite. Applied Catalysis A: General, 2000, 198, 197-206.	4.3	24
758	Side Reactions in the Liquid-Phase Cyclohexanone Ammoximation. Reaction Kinetics and Catalysis Letters, 2000, 69, 95-104.	0.6	3
759	Catalysis Involving Multicentered Species on Nonuniform Surfaces, 1. Adsorption. Reaction Kinetics and Catalysis Letters, 2000, 70, 219-226.	0.6	4
760	Kinetics and Stereoselectivity in Gas-Phase Hydrogenation of Alkylbenzenes Over Ni/Al2O3. Reaction Kinetics and Catalysis Letters, 2000, 71, 47-54.	0.6	9
761	Catalysis Involving Multi-Centered Species on Nonuniform Surfaces, 2. Kinetics. Reaction Kinetics and Catalysis Letters, 2000, 70, 227-234.	0.6	2
762	Preparation and properties of bimetallic Ru-Sn sol-gel catalysts: influence of catalyst reduction. Studies in Surface Science and Catalysis, 2000, , 757-765.	1.5	2
763	Kinetics of 2-methylpentane catalytic transformations over Pt/Na- \hat{l}^2 zeolite. Applied Catalysis A: General, 1999, 178, 85-95.	4.3	19
764	Kinetics of mesitylene hydrogenation on Ni/Al2O3. Applied Catalysis A: General, 1999, 185, 131-136.	4.3	15
765	Isomerization of α-Pinene over Clinoptilolite. Journal of Catalysis, 1999, 185, 352-362.	6.2	65
766	High Performances of Pt/ZnO Catalysts in Selective Hydrogenation of Crotonaldehyde. Journal of Catalysis, 1999, 188, 165-175.	6.2	171
767	Deactivation kinetics over induced nonuniform surfaces with linear steps of surface reactions. Chemical Engineering Science, 1998, 53, 2469-2474.	3.8	5
768	Deactivation and Selectivity Pattern in Crotonaldehyde Hydrogenation. Chemical Engineering and Technology, 1998, 21, 605-609.	1.5	16
769	On linear free energy correlations in liquid-phase catalytic hydrogenation of aromatic compounds. Reaction Kinetics and Catalysis Letters, 1998, 63, 317-321.	0.6	6
770	On the kinetic coupling and mechanism of aromatic ring hydrogenation. Reaction Kinetics and Catalysis Letters, 1998, 63, 47-51.	0.6	10
771	Kinetics of α-Pinene Isomerization. Industrial & Engineering Chemistry Research, 1998, 37, 2373-2377.	3.7	51
772	Kinetic Modeling of Enantioselective Hydrogenation. Industrial & Engineering Chemistry Research, 1997, 36, 4784-4790.	3.7	11
773	Kinetics of Ammonia Synthesis Close to Equilibrium. Industrial & Engineering Chemistry Research, 1997, 36, 4779-4783.	3.7	2
774	On the application of mean value theorem to reaction kinetics over inhomogeneous surfaces. Reaction Kinetics and Catalysis Letters, 1997, 62, 233-241.	0.6	2

#	Article	IF	CITATIONS
775	Dialkylbenzene hydrogenation: Kinetic analysis of rollover mechanism. Reaction Kinetics and Catalysis Letters, 1997, 60, 57-64.	0.6	11
776	Toluene and methylcyclohexane adsorption on nickel catalysts. Reaction Kinetics and Catalysis Letters, 1997, 61, 227-236.	0.6	13
777	Gas phase hydrogenation of o- and p-xylene on NiAl2O3 — Kinetic modelling. Applied Catalysis A: General, 1997, 150, 115-129.	4.3	29
778	On the application of transition state theory to heterogeneous catalytic reactions. Journal of Molecular Catalysis A, 1997, 123, L5-L7.	4.8	0
779	Kinetics of liquid-phase cyclohexanone ammoximation over a titanium silicate. Chemical Engineering and Technology, 1997, 20, 43-46.	1.5	12
780	Kinetics of buta-1,3-diene hydrogenation over 0.5% Pd/ \hat{l}^3 -Al2O3 catalyst. Chemical Engineering and Technology, 1997, 20, 138-143.	1.5	7
781	Kinetics of 4-tert-butylphenol hydrogenation over rhodium. Chemical Engineering and Technology, 1997, 20, 144-148.	1.5	14
782	Kinetic Aspects of Selectivity and Stereoselectivity for the Hydrogenation of Buta-1,3-diene over a Palladium Catalyst. Industrial & Engineering Chemistry Research, 1996, 35, 703-711.	3.7	23
783	Islanding and critical phenomena in multi-component adsorption layer with lateral interactions. Reaction Kinetics and Catalysis Letters, 1996, 59, 111-116.	0.6	1
784	Selectivity of complex heterogeneous catalytic reactions over energetically nonuniform surfaces. Reaction Kinetics and Catalysis Letters, 1996, 59, 117-123.	0.6	2
785	Kinetic coupling and selectivity pattern in consecutive heterogeneous catalytic reactions. Reaction Kinetics and Catalysis Letters, 1996, 58, 65-72.	0.6	4
786	Selectivity in consecutive heterogeneous catalytic reactions: Case of polyatomic molecules. Reaction Kinetics and Catalysis Letters, 1996, 57, 153-158.	0.6	2
787	Isothermal multiplicity in catalytic surface reactions with coverage dependent parameters — Case of polyatomic species. Chemical Engineering Science, 1996, 51, 55-62.	3.8	9
788	Computation of reaction rates for catalytic reactions on inhomogeneous surfaces with multicomponent chemisorption. Chemical Engineering Science, 1996, 51, 155-158.	3.8	9
789	Kinetics of buta-1,3-diene hydrogenation over palladium catalysts. Chemical Engineering Science, 1996, 51, 2879-2884.	3.8	15
790	Three-step heterogeneous catalytic reaction mechanism with coverage dependent parameters. Chemical Engineering and Technology, 1996, 19, 113-116.	1.5	2
791	Kinetics of m-xylene hydrogenation on NiAl2O3. Applied Catalysis A: General, 1996, 141, 207-228.	4.3	27
792	Gas phase hydrogenation of o- and p-xylene on Ni/Al2O3 â€" Kinetic behaviour. Applied Catalysis A: General, 1996, 145, 253-265.	4.3	27

#	Article	lF	Citations
793	Kinetics of ethylbenzene hydrogenation on Ni/Al2O3. Applied Catalysis A: General, 1995, 125, 271-291.	4.3	46
794	Non-equilibrium effects in the liquid-phase catalytic hydrogenation. Catalysis Today, 1995, 24, 35-39.	4.4	17
795	On the kinetic interpretation of metal-support interaction. Reaction Kinetics and Catalysis Letters, 1995, 55, 275-281.	0.6	5
796	On propene hydroformylation and hydrogenation over palladium. Reaction Kinetics and Catalysis Letters, 1995, 55, 199-205.	0.6	1
797	Kinetics of Thymol Hydrogenation over a Ni-Cr2O3 Catalyst. Industrial & Engineering Chemistry Research, 1995, 34, 1539-1547.	3.7	18
798	Modeling of Adsorption and Kinetics in Catalysis over Induced Nonuniform Surfaces: Surface Electronic Gas Model. Industrial & Engineering Chemistry Research, 1995, 34, 1208-1218.	3.7	28
799	Liquid-phase stereoselective thymol hydrogenation over supported nickel catalysts. Catalysis Letters, 1994, 29, 57-67.	2.6	12
800	On the optimum catalyst for heterogeneous catalytic reactions over metals. Reaction Kinetics and Catalysis Letters, 1994, 53, 467-474.	0.6	4
801	On the rate of heterogeneous catalytic reactions with ionic intermediates. Catalysis Letters, 1993, 20, 185-190.	2.6	2
802	Structure insensitivity: Application of the surface electronic gas model. Catalysis Letters, 1993, 22, 157-164.	2.6	10
803	Kinetics of the liquid-phase stereoselective hydrogenation of 4-tertbutylphenol over rhodium catalyst. Studies in Surface Science and Catalysis, 1993, 78, 243-250.	1.5	10
804	Quantification of cluster size effect (structure sensitivity) in heterogeneous catalysis. Catalysis, 0, , 179-203.	1.0	3
805	Alumina ceramic foams as catalyst supports. Catalysis, 0, , 28-50.	1.0	5
806	Development of the electrocoagulation and electrodialysis technologies for the quantitative recovery of lanolin. Separation Science and Technology, 0 , $1-13$.	2.5	0