J Andrew Pruszynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7557017/publications.pdf

Version: 2024-02-01

62 2,793 21 papers citations h-index

223531 46 g-index

95 95 all docs citations

95 times ranked 1615 citing authors

#	Article	IF	CITATIONS
1	Primary motor cortex underlies multi-joint integration for fast feedback control. Nature, 2011, 478, 387-390.	13.7	294
2	Optimal feedback control and the long-latency stretch response. Experimental Brain Research, 2012, 218, 341-359.	0.7	240
3	Long-Latency Reflexes of the Human Arm Reflect an Internal Model of Limb Dynamics. Current Biology, 2008, 18, 449-453.	1.8	232
4	Rapid Motor Responses Are Appropriately Tuned to the Metrics of a Visuospatial Task. Journal of Neurophysiology, 2008, 100, 224-238.	0.9	216
5	Edge-orientation processing in first-order tactile neurons. Nature Neuroscience, 2014, 17, 1404-1409.	7.1	166
6	Temporal Evolution of "Automatic Gain-Scaling― Journal of Neurophysiology, 2009, 102, 992-1003.	0.9	128
7	The long-latency reflex is composed of at least two functionally independent processes. Journal of Neurophysiology, 2011, 106, 449-459.	0.9	112
8	Stimulus″ocked responses on human arm muscles reveal a rapid neural pathway linking visual input to arm motor output. European Journal of Neuroscience, 2010, 32, 1049-1057.	1.2	96
9	Spinal stretch reflexes support efficient hand control. Nature Neuroscience, 2019, 22, 529-533.	7.1	88
10	Distributed task-specific processing of somatosensory feedback for voluntary motor control. ELife, 2016, 5, .	2.8	86
11	Goal-Dependent Modulation of Fast Feedback Responses in Primary Motor Cortex. Journal of Neuroscience, 2014, 34, 4608-4617.	1.7	85
12	Primate Upper Limb Muscles Exhibit Activity Patterns That Differ From Their Anatomical Action During a Postural Task. Journal of Neurophysiology, 2006, 95, 493-504.	0.9	77
13	Long-Latency Responses During Reaching Account for the Mechanical Interaction Between the Shoulder and Elbow Joints. Journal of Neurophysiology, 2009, 102, 3004-3015.	0.9	69
14	A Rapid Tactile-Motor Reflex Automatically Guides Reaching toward Handheld Objects. Current Biology, 2016, 26, 788-792.	1.8	65
15	Feedforward and Feedback Control Share an Internal Model of the Arm's Dynamics. Journal of Neuroscience, 2018, 38, 10505-10514.	1.7	59
16	Perturbation-evoked responses in primary motor cortex are modulated by behavioral context. Journal of Neurophysiology, 2014, 112, 2985-3000.	0.9	51
17	Fast and accurate edge orientation processing during object manipulation. ELife, 2018, 7, .	2.8	48
18	Rapid motor responses quickly integrate visuospatial task constraints. Experimental Brain Research, 2011, 211, 231-242.	0.7	45

#	Article	IF	Citations
19	Motor planning brings human primary somatosensory cortex into action-specific preparatory states. ELife, 2022, 11, .	2.8	40
20	Goal-dependent modulation of the long-latency stretch response at the shoulder, elbow, and wrist. Journal of Neurophysiology, 2015, 114, 3242-3254.	0.9	36
21	The language of the brain: real-world neural population codes. Current Opinion in Neurobiology, 2019, 58, 30-36.	2.0	31
22	BOLD Responses to Tactile Stimuli in Visual and Auditory Cortex Depend on the Frequency Content of Stimulation. Journal of Cognitive Neuroscience, 2012, 24, 2120-2134.	1.1	30
23	Long-Latency and Voluntary Responses to an Arm Displacement Can Be Rapidly Attenuated By Perturbation Offset. Journal of Neurophysiology, 2010, 103, 3195-3204.	0.9	29
24	Done in 100 ms: path-dependent visuomotor transformation in the human upper limb. Journal of Neurophysiology, 2018, 119, 1319-1328.	0.9	28
25	Learning New Feedforward Motor Commands Based on Feedback Responses. Current Biology, 2020, 30, 1941-1948.e3.	1.8	28
26	Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching. Journal of Neurophysiology, 2016, 116, 2236-2249.	0.9	26
27	Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control. Journal of Neurophysiology, 2017, 118, 1984-1997.	0.9	25
28	Stability of representational geometry across a wide range of fMRI activity levels. NeuroImage, 2019, 186, 155-163.	2.1	25
29	Registered reports at the <i>European Journal of Neuroscience</i> : consolidating and extending peerâ€reviewed study preâ€registration. European Journal of Neuroscience, 2017, 45, 627-628.	1.2	22
30	A rapid visuomotor response on the human upper limb is selectively influenced by implicit motor learning. Journal of Neurophysiology, 2019, 121, 85-95.	0.9	22
31	Primary motor cortex and fast feedback responses to mechanical perturbations: a primer on what we know now and some suggestions on what we should find out next. Frontiers in Integrative Neuroscience, 2014, 8, 72.	1.0	19
32	Human Touch Receptors Are Sensitive to Spatial Details on the Scale of Single Fingerprint Ridges. Journal of Neuroscience, 2021, 41, 3622-3634.	1.7	19
33	Edge orientation perception during active touch. Journal of Neurophysiology, 2018, 120, 2423-2429.	0.9	17
34	Stretch reflexes. Current Biology, 2020, 30, R1025-R1030.	1.8	17
35	Primary motor cortex neurons classified in a postural task predict muscle activation patterns in a reaching task. Journal of Neurophysiology, 2016, 115, 2021-2032.	0.9	15
36	Spinal stretch reflexes support efficient control of reaching. Journal of Neurophysiology, 2021, 125, 1339-1347.	0.9	14

#	Article	IF	Citations
37	Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension. Journal of Neuroscience, 2020, 40, 9210-9223.	1.7	13
38	Rapid feedback responses are flexibly coordinated across arm muscles to support goal-directed reaching. Journal of Neurophysiology, 2018, 119, 537-547.	0.9	10
39	Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. Journal of Neurophysiology, 2020, 124, 1900-1913.	0.9	10
40	Mapping the Integration of Sensory Information across Fingers in Human Sensorimotor Cortex. Journal of Neuroscience, 2022, 42, 5173-5185.	1.7	10
41	Concentric radiofrequency arrays to increase the statistical power of resting-state maps in monkeys. Neurolmage, 2018, 178, 287-294.	2.1	9
42	Neural network models of the tactile system develop first-order units with spatially complex receptive fields. PLoS ONE, 2018, 13, e0199196.	1.1	9
43	The Planning Horizon for Movement Sequences. ENeuro, 2021, 8, ENEURO.0085-21.2021.	0.9	9
44	Generalizing movement patterns following shoulder fixation. Journal of Neurophysiology, 2020, 123, 1193-1205.	0.9	8
45	Shared internal models for feedforward and feedback control of arm dynamics in nonâ€human primates. European Journal of Neuroscience, 2021, 53, 1605-1620.	1.2	8
46	Skin and muscle receptors shape coordinated fast feedback responses in the upper limb. Current Opinion in Physiology, 2021, 20, 198-205.	0.9	8
47	Orientation processing by synaptic integration across first-order tactile neurons. PLoS Computational Biology, 2020, 16, e1008303.	1.5	8
48	Complex Spatiotemporal Tuning in Human Upper-Limb Muscles. Journal of Neurophysiology, 2010, 103, 564-572.	0.9	7
49	Voluntary modification of rapid tactile-motor responses during reaching differs from its visuomotor counterpart. Journal of Neurophysiology, 2020, 124, 284-294.	0.9	7
50	Sensory information from a slipping object elicits a rapid and automatic shoulder response. Journal of Neurophysiology, 2020, 123, 1103-1112.	0.9	7
51	Biting intentions modulate digastric reflex responses to sudden unloading of the jaw. Journal of Neurophysiology, 2014, 112, 1067-1073.	0.9	6
52	Reading the mind to move the body. Science, 2015, 348, 860-861.	6.0	6
53	Sharing voxelwise neuroimaging results from rhesus monkeys and other species with Neurovault. Neurolmage, 2021, 225, 117518.	2.1	6
54	Science in flux: Registered reports and beyond at the European Journal of Neuroscience. European Journal of Neuroscience, 2019, 49, 4-5.	1.2	5

#	Article	IF	CITATIONS
55	Maintaining arm control during selfâ€triggered and unpredictable unloading perturbations. European Journal of Neuroscience, 2019, 50, 3531-3543.	1.2	2
56	Temporal Encoding of Movement in Motor Cortical Neurons. Journal of Neuroscience, 2007, 27, 10076-10077.	1.7	1
57	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		O
58	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		0
59	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		O
60	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		0
61	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		O
62	Orientation processing by synaptic integration across first-order tactile neurons., 2020, 16, e1008303.		0