Mitra J Z Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7555667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluid-structure interaction of a flexible cantilever cylinder at low Reynolds numbers. Physical Review Fluids, 2022, 7, .	2.5	2
2	Impaired trigeminal control of ingestive behavior in the Prrxl1-/- mouse is associated with a lemniscal-biased orosensory deafferentation. PLoS ONE, 2022, 17, e0258837.	2.5	1
3	A novel stimulator to investigate the tuning of multi-whisker responsive neurons for speed and the direction of global motion: Contact-sensitive moving stimulator for multi-whisker stimulation. Journal of Neuroscience Methods, 2022, 374, 109565.	2.5	0
4	Tapered Polymer Whiskers to Enable Three-Dimensional Tactile Feature Extraction. Soft Robotics, 2021, 8, 44-58.	8.0	3
5	WhiskSight: A Reconfigurable, Vision-Based, Optical Whisker Sensing Array for Simultaneous Contact, Airflow, and Inertia Stimulus Detection. IEEE Robotics and Automation Letters, 2021, 6, 3357-3364.	5.1	7
6	Constraints on the deformation of the vibrissa within the follicle. PLoS Computational Biology, 2021, 17, e1007887.	3.2	9
7	A dynamical model for generating synthetic data to quantify active tactile sensing behavior in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
8	Continuous, multidimensional coding of 3D complex tactile stimuli by primary sensory neurons of the vibrissal system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
9	Defining "active sensing―through an analysis of sensing energetics: homeoactive and alloactive sensing. Journal of Neurophysiology, 2020, 124, 40-48.	1.8	22
10	The Cellular and Mechanical Basis for Response Characteristics of Identified Primary Afferents in the Rat Vibrissal System. Current Biology, 2020, 30, 815-826.e5.	3.9	23
11	Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow. Journal of Neuroscience, 2019, 39, 5881-5896.	3.6	9
12	Shaking Paws Is Not the Same as Shaking Hands. Neuron, 2019, 102, 911-913.	8.1	0
13	Quantification of vibrissal mechanical properties across the rat mystacial pad. Journal of Neurophysiology, 2019, 121, 1879-1895.	1.8	8
14	Contact-Resistive Sensing of Touch and Airflow Using A Rat Whisker. , 2018, , .		4
15	Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae. PLoS ONE, 2018, 13, e0194981.	2.5	14
16	Ergodic Exploration Using Binary Sensing for Nonparametric Shape Estimation. IEEE Robotics and Automation Letters, 2017, 2, 827-834.	5.1	21
17	Variations in vibrissal geometry across the rat mystacial pad: base diameter, medulla, and taper. Journal of Neurophysiology, 2017, 117, 1807-1820.	1.8	27
18	Tactile Sensing with Whiskers of Various Shapes: Determining the Three-Dimensional Location of Object Contact Based on Mechanical Signals at the Whisker Base. Soft Robotics, 2017, 4, 88-102.	8.0	40

Mitra J Z Hartmann

#	Article	IF	CITATIONS
19	Whisking Kinematics Enables Object Localization in Head-Centered Coordinates Based on Tactile Information from a Single Vibrissa. Frontiers in Behavioral Neuroscience, 2016, 10, 145.	2.0	19
20	Whiskers aid anemotaxis in rats. Science Advances, 2016, 2, e1600716.	10.3	39
21	Mechanical responses of rat vibrissae to airflow. Journal of Experimental Biology, 2016, 219, 937-948.	1.7	36
22	Whisking mechanics and active sensing. Current Opinion in Neurobiology, 2016, 40, 178-188.	4.2	49
23	Biology to Technology in Active Touch Sensing – Introduction to the Special Section. IEEE Transactions on Haptics, 2016, 9, 155-157.	2.7	0
24	Simulations of a Vibrissa Slipping along a Straight Edge and an Analysis of Frictional Effects during Whisking. IEEE Transactions on Haptics, 2016, 9, 158-169.	2.7	21
25	Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad. PLoS Computational Biology, 2016, 12, e1004109.	3.2	17
26	Representation of Stimulus Speed and Direction in Vibrissal-Sensitive Regions of the Trigeminal Nuclei: A Comparison of Single Unit and Population Responses. PLoS ONE, 2016, 11, e0158399.	2.5	4
27	Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system. ELife, 2016, 5, .	6.0	43
28	Probability distributions of whisker–surface contact: quantifying elements of the rat vibrissotactile natural scene. Journal of Experimental Biology, 2015, 218, 2551-2562.	1.7	21
29	Tactile signals transmitted by the vibrissa during active whisking behavior. Journal of Neurophysiology, 2015, 113, 3511-3518.	1.8	33
30	Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior. Frontiers in Behavioral Neuroscience, 2015, 9, 356.	2.0	37
31	The search space of the rat during whisking behavior. Journal of Experimental Biology, 2014, 217, 3365-3376.	1.7	25
32	Modeling Forces and Moments at the Base of a Rat Vibrissa during Noncontact Whisking and Whisking against an Object. Journal of Neuroscience, 2014, 34, 9828-9844.	3.6	66
33	Linear reactive control for efficient 2D and 3D bipedal walking over rough terrain. Adaptive Behavior, 2013, 21, 29-46.	1.9	6
34	Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. Journal of Neurophysiology, 2012, 107, 2298-2312.	1.8	79
35	Linear reactive control of three-dimensional bipedal walking in the presence of noise and uncertainty. Adaptive Behavior, 2012, 20, 409-426.	1.9	2
36	Sensory prediction on a whiskered robot: a tactile analogy to "optical flow― Frontiers in Neurorobotics, 2012, 6, 9.	2.8	15

Mitra J Z Hartmann

#	Article	IF	CITATIONS
37	Variation in Young's modulus along the length of a rat vibrissa. Journal of Biomechanics, 2011, 44, 2775-2781.	2.1	61
38	A night in the life of a rat: vibrissal mechanics and tactile exploration. Annals of the New York Academy of Sciences, 2011, 1225, 110-118.	3.8	42
39	Radial distance determination in the rat vibrissal system and the effects of Weber's law. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3049-3057.	4.0	56
40	The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact. PLoS Computational Biology, 2011, 7, e1001120.	3.2	131
41	Extracting Object Contours with the Sweep of a Robotic Whisker Using Torque Information. International Journal of Robotics Research, 2010, 29, 1233-1245.	8.5	54
42	Principles and applications of active tactile sensing strategies in the rat vibrissal system. , 2010, , .		2
43	Active touch, exploratory movements, and sensory prediction. Integrative and Comparative Biology, 2009, 49, 681-690.	2.0	18
44	The Brain in Its Body: Motor Control and Sensing in a Biomechanical Context. Journal of Neuroscience, 2009, 29, 12807-12814.	3.6	122
45	A two-dimensional force sensor in the millinewton range for measuring vibrissal contacts. Journal of Neuroscience Methods, 2008, 172, 158-167.	2.5	20
46	Artificial Whiskers Suitable for Array Implementation: Accounting for Lateral Slip and Surface Friction. IEEE Transactions on Robotics, 2008, 24, 1157-1167.	10.3	48
47	Towards an "early neural circuit simulator": A FPGA implementation of processing in the rat whisker system. , 2008, , .		1
48	Variability in Velocity Profiles During Free-Air Whisking Behavior of Unrestrained Rats. Journal of Neurophysiology, 2008, 100, 740-752.	1.8	73
49	Using hardware models to quantify sensory data acquisition across the rat vibrissal array. Bioinspiration and Biomimetics, 2007, 2, S135-S145.	2.9	22
50	Biomechanical Models for Radial Distance Determination by the Rat Vibrissal System. Journal of Neurophysiology, 2007, 98, 2439-2455.	1.8	149