Arun Kumar Mannodi-Kanakkithodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7554249/publications.pdf

Version: 2024-02-01

Arun Kumar

#	Article	IF	CITATIONS
1	Machine learning in materials informatics: recent applications and prospects. Npj Computational Materials, 2017, 3, .	8.7	1,013
2	Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. Scientific Reports, 2016, 6, 20952.	3.3	279
3	Rational Coâ€Design of Polymer Dielectrics for Energy Storage. Advanced Materials, 2016, 28, 6277-6291.	21.0	149
4	Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Materials Today, 2018, 21, 785-796.	14.2	143
5	A polymer dataset for accelerated property prediction and design. Scientific Data, 2016, 3, 160012.	5.3	139
6	Accelerated materials property predictions and design using motif-based fingerprints. Physical Review B, 2015, 92, .	3.2	136
7	Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Chemical Communications, 2017, 53, 11751-11754.	4.1	65
8	Poly(dimethyltin glutarate) as a Prospective Material for High Dielectric Applications. Advanced Materials, 2015, 27, 346-351.	21.0	64
9	Rational Design of Organotin Polyesters. Macromolecules, 2015, 48, 2422-2428.	4.8	54
10	Mining Materials Design Rules from Data: The Example of Polymer Dielectrics. Chemistry of Materials, 2017, 29, 9001-9010.	6.7	48
11	Critical assessment of regression-based machine learning methods for polymer dielectrics. Computational Materials Science, 2016, 125, 123-135.	3.0	45
12	Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide. Chemistry of Materials, 2019, 31, 3599-3612.	6.7	37
13	Optimization of Organotin Polymers for Dielectric Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 21270-21277.	8.0	33
14	Effect of selenium and chlorine co-passivation in polycrystalline CdSeTe devices. Applied Physics Letters, 2019, 115, .	3.3	33
15	Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides. Npj Computational Materials, 2020, 6, .	8.7	32
16	Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers. Computational Materials Science, 2016, 125, 92-99.	3.0	31
17	A rational co-design approach to the creation of new dielectric polymers with high energy density. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 732-743.	2.9	26
18	Data-driven design of novel halide perovskite alloys. Energy and Environmental Science, 2022, 15, 1930-1949.	30.8	26

Arun Kumar

#	Article	IF	CITATIONS
19	Infrared-pump electronic-probe of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices. Nature Communications, 2019, 10, 482.	12.8	25
20	Universal machine learning framework for defect predictions in zinc blende semiconductors. Patterns, 2022, 3, 100450.	5.9	22
21	Defect Energetics in Pseudo-Cubic Mixed Halide Lead Perovskites from First-Principles. Journal of Physical Chemistry C, 2020, 124, 16729-16738.	3.1	19
22	Computational Data-Driven Materials Discovery. Trends in Chemistry, 2021, 3, 79-82.	8.5	19
23	Materials Data Infrastructure and Materials Informatics. , 2018, , 193-225.		18
24	Defective Ultrathin ZnIn ₂ S ₄ for Photoreductive Deuteration of Carbonyls Using D ₂ O as the Deuterium Source. Advanced Science, 2022, 9, e2103408.	11.2	15
25	Critical role of morphology on the dielectric constant of semicrystalline polyolefins. Journal of Chemical Physics, 2016, 144, 234905.	3.0	14
26	Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH ₃ NH ₃ PbCl ₃ and CH ₃ NH ₃ Pbl ₃ or (C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃) _{<i>i>i</i>}	8.0 nâ^'1<	14 /sub>Pb <i><s< td=""></s<></i>
27	Mixtures. ACS Applied Materials & amp; Interfaces, 2019, 11, 9583-9593. Accelerated screening of functional atomic impurities in halide perovskites using high-throughput computations and machine learning. Journal of Materials Science, 2022, 57, 10736-10754.	3.7	10
28	A material genome approach towards exploration of Zn and Cd coordination complex polyester as dielectrics: Design, synthesis and characterization. Polymer, 2018, 159, 95-105.	3.8	7
29	Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets. Journal of Chemical Physics, 2022, 156, 114110.	3.0	5
30	Spectroscopic Comparison of Thermal Transport at Organic–Inorganic and Organic-Hybrid Interfaces Using CsPbBr ₃ and FAPbBr ₃ (FA = Formamidinium) Perovskite Nanocrystals. Nano Letters, 2019, 19, 8155-8160.	9.1	4
31	Deep learning the properties of inorganic perovskites. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 034005.	2.0	4
32	First-principles Study of Intrinsic and Extrinsic Point Defects in Lead-Based Hybrid Perovskites. , 2018, ,		3
33	Efficient CdTe photovoltaics by co-passivating grain boundaries. , 2018, , .		2
34	First principles modeling of polymer encapsulant degradation in Si photovoltaic modules. Physical Chemistry Chemical Physics, 2021, 23, 10357-10364.	2.8	2
35	Computational design of passivants for CdTe grain boundaries. Solar Energy Materials and Solar Cells, 2021, 232, 111279.	6.2	2
36	A first principles investigation of ternary and quaternary II–VI zincblende semiconductor alloys. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 044001.	2.0	1

#	Article	IF	CITATIONS
37	Machine learning defect properties in Cd-based chalcogenides. , 2019, , .		0
38	A Rational Co-Design Approach for Next Generation Dielectric Materials with the Transition Metal Containing Coordination Polymers. ECS Meeting Abstracts, 2017, , .	0.0	0