Kirsten Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7554006/publications.pdf

Version: 2024-02-01

109321 133252 4,357 98 35 59 citations h-index g-index papers 141 141 141 4470 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In vitro interaction network of a synthetic gut bacterial community. ISME Journal, 2022, 16, 1095-1109.	9.8	66
2	Eukaryotic catecholamine hormones influence the chemotactic control of <i>Vibrio campbellii</i> by binding to the coupling protein CheW. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118227119.	7.1	6
3	Division of labor and collective functionality in Escherichia coli under acid stress. Communications Biology, 2022, 5, 327.	4.4	14
4	Synthetic postâ€translational modifications of elongation factor P using the ligase EpmA. FEBS Journal, 2021, 288, 663-677.	4.7	5
5	Transcriptional regulation of the <i>N</i> _ε â€fructoselysine metabolism in <i>Escherichia coli</i> by global and substrateâ€specific cues. Molecular Microbiology, 2021, 115, 175-190.	2.5	10
6	Elongation factor P is required for EII Glc translation in Corynebacterium glutamicum due to an essential polyproline motif. Molecular Microbiology, 2021, 115, 320-331.	2.5	4
7	Direct binding of benzoate derivatives to two chemoreceptors with Cache sensor domains in Halomonas titanicae KHS3. Molecular Microbiology, 2021, 115, 672-683.	2.5	7
8	Dynamics of chromosomal target search by a membrane-integrated one-component receptor. PLoS Computational Biology, 2021, 17, e1008680.	3.2	7
9	Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Communications Biology, 2021, 4, 589.	4.4	13
10	Insights into a Pyruvate Sensing and Uptake System in Vibrio campbellii and Its Importance for Virulence. Journal of Bacteriology, 2021, 203, e0029621.	2.2	4
11	Phenotypic heterogeneity of microbial populations under nutrient limitation. Current Opinion in Biotechnology, 2020, 62, 160-167.	6.6	18
12	Function and Regulation of the Pyruvate Transporter CstA in Escherichia coli. International Journal of Molecular Sciences, 2020, 21, 9068.	4.1	16
13	MS-Based <i>in Situ</i> Proteomics Reveals AMPylation of Host Proteins during Bacterial Infection. ACS Infectious Diseases, 2020, 6, 3277-3289.	3.8	7
14	Molecular Design of a Signaling System Influences Noise in Protein Abundance under Acid Stress in Different Gammaproteobacteria. Journal of Bacteriology, 2020, 202, .	2.2	14
15	Structure and Function of an Elongation Factor P Subfamily in Actinobacteria. Cell Reports, 2020, 30, 4332-4342.e5.	6.4	11
16	Switching the Post-translational Modification of Translation Elongation Factor EF-P. Frontiers in Microbiology, 2019, 10, 1148.	3.5	16
17	Coming in and Finding Out: Blending Receptorâ€Targeted Delivery and Efficient Endosomal Escape in a Novel Bioâ€Responsive siRNA Delivery System for Gene Knockdown in Pulmonary T Cells. Advanced Therapeutics, 2019, 2, 1900047.	3.2	21
18	Phenotypic Heterogeneity Generated by Histidine Kinase-Based Signaling Networks. Journal of Molecular Biology, 2019, 431, 4547-4558.	4.2	8

#	Article	IF	CITATIONS
19	Importance of Pyruvate Sensing and Transport for the Resuscitation of Viable but Nonculturable <i>Escherichia coli</i> K-12. Journal of Bacteriology, 2019, 201, .	2.2	39
20	DNA-binding directs the localization of a membrane-integrated receptor of the ToxR family. Communications Biology, 2019, 2, 4.	4.4	21
21	Phosphorylation of the outer membrane mitochondrial protein OM64 influences protein import into mitochondria. Mitochondrion, 2019, 44, 93-102.	3.4	15
22	Evidence of Cross-Regulation in Two Closely Related Pyruvate-Sensing Systems in Uropathogenic Escherichia coli. Journal of Membrane Biology, 2018, 251, 65-74.	2.1	13
23	LACTATEing Salmonella: A Host-Derived Fermentation Product Fuels Pathogen Growth. Cell Host and Microbe, 2018, 23, 3-4.	11.0	11
24	Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biology, 2018, 8, 180023.	3.6	43
25	Outer Membrane Vesicles Facilitate Trafficking of the Hydrophobic Signaling Molecule CAI-1 between Vibrio harveyi Cells. Journal of Bacteriology, 2018, 200, .	2.2	73
26	A Single-Cell View of the BtsSR/YpdAB Pyruvate Sensing Network in Escherichia coli and Its Biological Relevance. Journal of Bacteriology, 2018, 200, .	2.2	25
27	BtsT, a Novel and Specific Pyruvate/H ⁺ Symporter in Escherichia coli. Journal of Bacteriology, 2018, 200, .	2.2	36
28	Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy. Scientific Reports, 2018, 8, 10137.	3.3	13
29	The role of polyproline motifs in the histidine kinase EnvZ. PLoS ONE, 2018, 13, e0199782.	2.5	9
30	Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Computational Biology, 2018, 14, e1005987.	3.2	31
31	Revisiting regulation of potassium homeostasis in <i>Escherichia coli</i> : the connection to phosphate limitation. MicrobiologyOpen, 2017, 6, e00438.	3.0	24
32	CipA and CipB as Scaffolds To Organize Proteins into Crystalline Inclusions. ACS Synthetic Biology, 2017, 6, 826-836.	3.8	28
33	Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Scientific Reports, 2017, 7, 1051.	3.3	46
34	A Versatile Toolbox for the Control of Protein Levels Using <i>N</i> ^{Îμ} -Acetyl- <scp>l</scp> -lysine Dependent Amber Suppression. ACS Synthetic Biology, 2017, 6, 1892-1902.	3.8	21
35	Identification of a High-Affinity Pyruvate Receptor in Escherichia coli. Scientific Reports, 2017, 7, 1388.	3.3	36
36	Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P. MBio, 2017, 8, .	4.1	24

#	Article	IF	CITATIONS
37	Non anonical activation of histidine kinase KdpD by phosphotransferase protein PtsN through interaction with the transmitter domain. Molecular Microbiology, 2017, 106, 54-73.	2.5	26
38	Activity, Abundance, and Localization of Quorum Sensing Receptors in Vibrio harveyi. Frontiers in Microbiology, 2017, 8, 634.	3.5	19
39	Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in \hat{l}^3 -proteobacteria. PLoS ONE, 2017, 12, e0182993.	2.5	18
40	Interaction Analysis of a Two-Component System Using Nanodiscs. PLoS ONE, 2016, 11, e0149187.	2.5	15
41	Identification and Initial Characterization of Prophages in Vibrio campbellii. PLoS ONE, 2016, 11, e0156010.	2.5	26
42	Fimbrolide Natural Products Disrupt Bioluminescence of <i>Vibrio</i> By Targeting Autoinducer Biosynthesis and Luciferase Activity. Angewandte Chemie - International Edition, 2016, 55, 1187-1191.	13.8	16
43	Insights into the DNA-binding mechanism of a LytTR-type transcription regulator. Bioscience Reports, 2016, 36, .	2.4	14
44	A Dual-Sensing Receptor Confers Robust Cellular Homeostasis. Cell Reports, 2016, 16, 213-221.	6.4	32
45	Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria. Systematic and Applied Microbiology, 2016, 39, 503-515.	2.8	35
46	Mechanistic analysis of aliphatic \hat{l}^2 -lactones in Vibrio harveyi reveals a quorum sensing independent mode of action. Chemical Communications, 2016, 52, 11971-11974.	4.1	2
47	Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first Arg ^{Rha} specific antibody. Chemical Science, 2016, 7, 6995-7001.	7.4	30
48	Stall no more at polyproline stretches with the translation elongation factors EFâ€P and IFâ€5A. Molecular Microbiology, 2016, 99, 219-235.	2.5	70
49	Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. Journal of Bacteriology, 2016, 198, 98-110.	2.2	97
50	Phage-mediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing. PLoS Pathogens, 2015, 11, e1004653.	4.7	77
51	Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli. Journal of Molecular Biology, 2015, 427, 2548-2561.	4.2	35
52	Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 2015, 11, 266-270.	8.0	116
53	Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. FEMS Microbiology Letters, 2015, 362, 1-7.	1.8	15
54	The Phosphorylation Flow of the Vibrio harveyi Quorum-Sensing Cascade Determines Levels of Phenotypic Heterogeneity in the Population. Journal of Bacteriology, 2015, 197, 1747-1756.	2.2	46

#	Article	IF	Citations
55	Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5. PLoS ONE, 2015, 10, e0117040.	2.5	40
56	A Conserved Proline Triplet in Val-tRNA Synthetase and the Origin of Elongation Factor P. Cell Reports, 2014, 9, 476-483.	6.4	41
57	Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Research, 2014, 42, 10711-10719.	14.5	88
58	New Insights into the Interplay Between the Lysine Transporter LysP and the pH Sensor CadC in Escherichia Coli. Journal of Molecular Biology, 2014, 426, 215-229.	4.2	34
59	Identification of a Novel Nutrient-Sensing Histidine Kinase/Response Regulator Network in Escherichia coli. Journal of Bacteriology, 2014, 196, 2023-2029.	2.2	38
60	A Modular View of the Diversity of Cell-Density-Encoding Schemes in Bacterial Quorum-Sensing Systems. Biophysical Journal, 2014, 107, 266-277.	0.5	22
61	The bacterial translation stress response. FEMS Microbiology Reviews, 2014, 38, 1172-1201.	8.6	165
62	A Sensory Complex Consisting of an ATP-binding Cassette Transporter and a Two-component Regulatory System Controls Bacitracin Resistance in Bacillus subtilis. Journal of Biological Chemistry, 2014, 289, 27899-27910.	3.4	73
63	Single Cell Kinetics of Phenotypic Switching in the Arabinose Utilization System of E. coli. PLoS ONE, 2014, 9, e89532.	2.5	48
64	Dynamics of an Interactive Network Composed of a Bacterial Two-Component System, a Transporter and K+ as Mediator. PLoS ONE, 2014, 9, e89671.	2.5	12
65	Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches. Science, 2013, 339, 82-85.	12.6	393
66	Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15265-15270.	7.1	167
67	Identification of a Target Gene and Activating Stimulus for the YpdA/YpdB Histidine Kinase/Response Regulator System in Escherichia coli. Journal of Bacteriology, 2013, 195, 807-815.	2.2	40
68	Quantification of Interaction Strengths between Chaperones and Tetratricopeptide Repeat Domain-containing Membrane Proteins. Journal of Biological Chemistry, 2013, 288, 30614-30625.	3.4	28
69	First Insights into the Unexplored Two-Component System YehU/YehT in Escherichia coli. Journal of Bacteriology, 2012, 194, 4272-4284.	2.2	41
70	Histidine kinases and response regulators in networks. Current Opinion in Microbiology, 2012, 15, 118-124.	5.1	204
71	Deactivation of the E. coli pH Stress Sensor CadC by Cadaverine. Journal of Molecular Biology, 2012, 424, 15-27.	4.2	37
72	A comprehensive toolbox for the rapid construction of lacZ fusion reporters. Journal of Microbiological Methods, 2012, 91, 537-543.	1.6	31

#	Article	IF	CITATIONS
73	Autoinducers Act as Biological Timers in Vibrio harveyi. PLoS ONE, 2012, 7, e48310.	2.5	57
74	Tuning communication fidelity. Nature Chemical Biology, 2011, 7, 502-503.	8.0	4
75	Crystal structure of the sensory domain of <i>Escherichia coli</i> CadC, a member of the ToxRâ€like protein family. Protein Science, 2011, 20, 656-669.	7.6	26
76	New Insights into the Signaling Mechanism of the pH-responsive, Membrane-integrated Transcriptional Activator CadC of Escherichia coli. Journal of Biological Chemistry, 2011, 286, 10681-10689.	3.4	56
77	The complexity of the â€~simple' two-component system KdpD/KdpE in <i>Escherichia coli</i> i>. FEMS Microbiology Letters, 2010, 304, 97-106.	1.8	71
78	A New Mechanism of Phosphoregulation in Signal Transduction Pathways. Science Signaling, 2009, 2, pe71.	3.6	6
79	Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. BMC Microbiology, 2009, 9, 133.	3.3	14
80	Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA ^{Ntr} in <i>Escherichia coli</i> . Molecular Microbiology, 2009, 72, 978-994.	2.5	98
81	Heterogeneity in quorum sensingâ€regulated bioluminescence of <i>Vibrio harveyi</i> . Molecular Microbiology, 2009, 73, 267-277.	2.5	141
82	The regulatory interplay between membraneâ€integrated sensors and transport proteins in bacteria. Molecular Microbiology, 2009, 73, 982-991.	2.5	67
83	The Universal Stress Protein UspC Scaffolds the KdpD/KdpE Signaling Cascade of Escherichia coli under Salt Stress. Journal of Molecular Biology, 2009, 386, 134-148.	4.2	69
84	Induction Kinetics of a Conditional pH Stress Response System in Escherichia coli. Journal of Molecular Biology, 2009, 393, 272-286.	4.2	62
85	The membraneâ€integrated transcriptional activator CadC of <i>Escherichia coli</i> senses lysine indirectly via the interaction with the lysine permease LysP. Molecular Microbiology, 2008, 67, 570-583.	2.5	105
86	Photorhabdus luminescens genes induced upon insect infection. BMC Genomics, 2008, 9, 229.	2.8	48
87	Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red®/ET® Recombination. Microbial Cell Factories, 2008, 7, 14.	4.0	63
88	The Extension of the Fourth Transmembrane Helix of the Sensor Kinase KdpD of <i>Escherichia coli</i> li>ls Involved in Sensing. Journal of Bacteriology, 2007, 189, 7326-7334.	2.2	17
89	CadC-Mediated Activation of the <i>cadBA</i> Promoter in <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 10, 26-39.	1.0	76
90	The N-terminal Input Domain of the Sensor Kinase KdpD of Escherichia coli Stabilizes the Interaction between the Cognate Response Regulator KdpE and the Corresponding DNA-binding Site. Journal of Biological Chemistry, 2003, 278, 51277-51284.	3.4	33

#	Article	IF	CITATION
91	Cs + Induces the kdp Operon of Escherichia coli by Lowering the Intracellular K + Concentration. Journal of Bacteriology, 2001, 183, 3800-3803.	2.2	39
92	K+ Stimulates Specifically the Autokinase Activity of Purified and Reconstituted EnvZ of Escherichia coli. Journal of Biological Chemistry, 2001, 276, 40896-40902.	3.4	36
93	K+ and Ionic Strength Directly Influence the Autophosphorylation Activity of the Putative Turgor Sensor KdpD ofEscherichia coli. Journal of Biological Chemistry, 2000, 275, 40142-40147.	3.4	61
94	The Hydrophilic N-terminal Domain Complements the Membrane-anchored C-terminal Domain of the Sensor Kinase KdpD of Escherichia coli. Journal of Biological Chemistry, 2000, 275, 17080-17085.	3.4	31
95	The turgor sensor KdpD of Escherichia coli is a homodimer. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 114-124.	2.6	29
96	Truncation of Amino Acids 12–128 Causes Deregulation of the Phosphatase Activity of the Sensor Kinase KdpD of Escherichia coli. Journal of Biological Chemistry, 1998, 273, 17406-17410.	3.4	43
97	Individual Substitutions of Clustered Arginine Residues of the Sensor Kinase KdpD of Escherichia coli Modulate the Ratio of Kinase to Phosphatase Activity. Journal of Biological Chemistry, 1998, 273, 26415-26420.	3.4	29
98	Purification, Reconstitution, and Characterization of KdpD, the Turgor Sensor of Escherichia coli. Journal of Biological Chemistry, 1997, 272, 10847-10852.	3.4	90