Jennifer Glass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7551862/publications.pdf Version: 2024-02-01

IENNIEED CLASS

#	Article	IF	CITATIONS
1	Trace Metal Requirements for Microbial Enzymes Involved in the Production and Consumption of Methane and Nitrous Oxide. Frontiers in Microbiology, 2012, 3, 61.	3.5	291
2	The importance of abiotic reactions for nitrous oxide production. Biogeochemistry, 2015, 126, 251-267.	3.5	163
3	SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature, 2016, 536, 179-183.	27.8	160
4	Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology, 2009, 7, 100-123.	2.4	141
5	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	3.0	133
6	The <i>Sphagnum</i> microbiome: new insights from an ancient plant lineage. New Phytologist, 2016, 211, 57-64.	7.3	123
7	Experimental warming alters the community composition, diversity, and N ₂ fixation activity of peat moss (<i>Sphagnum fallax</i>) microbiomes. Clobal Change Biology, 2019, 25, 2993-3004.	9.5	89
8	Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 2012, 3, 331.	3.5	77
9	Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Frontiers in Microbiology, 2015, 6, 998.	3.5	58
10	The Sphagnome Project: enabling ecological and evolutionary insights through a genusâ€level sequencing project. New Phytologist, 2018, 217, 16-25.	7.3	54
11	The Geochemical Record of the Ancient Nitrogen Cycle, Nitrogen Isotopes, and Metal Cofactors. Methods in Enzymology, 2011, 486, 483-506.	1.0	51
12	Multiple prebiotic metals mediate translation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12164-12169.	7.1	48
13	Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methaneâ€oxidizing microbial consortia in sulphidic marine sediments. Environmental Microbiology, 2014, 16, 1592-1611.	3.8	47
14	Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Applied and Environmental Microbiology, 2017, 83, .	3.1	46
15	Metagenomic Binning Recovers a Transcriptionally Active Gammaproteobacterium Linking Methanotrophy to Partial Denitrification in an Anoxic Oxygen Minimum Zone. Frontiers in Marine Science, 2017, 4, .	2.5	44
16	Metabolic potential and <i>in situ</i> activity of marine Marinimicrobia bacteria in an anoxic water column. Environmental Microbiology, 2017, 19, 4392-4416.	3.8	40
17	Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology, 2018, 16, 597-609.	2.4	39
18	Molybdenum-nitrogen co-limitation in freshwater and coastal heterocystous cyanobacteria. Limnology and Oceanography, 2010, 55, 667-676.	3.1	36

JENNIFER GLASS

#	Article	lF	CITATIONS
19	Molybdenum geochemistry in a seasonally dysoxic Mo-limited lacustrine ecosystem. Geochimica Et Cosmochimica Acta, 2013, 114, 204-219.	3.9	35
20	A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. Journal of Biological Chemistry, 2020, 295, 15438-15453.	3.4	31
21	Water and Life: The Medium is the Message. Journal of Molecular Evolution, 2021, 89, 2-11.	1.8	29
22	Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Geobiology, 2017, 15, 678-689.	2.4	24
23	Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biology and Evolution, 2020, 12, 1694-1710.	2.5	24
24	Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environmental Microbiology Reports, 2020, 12, 49-57.	2.4	22
25	Microbial metabolism and adaptations in <i>Atribacteria</i> â€dominated methane hydrate sediments. Environmental Microbiology, 2021, 23, 4646-4660.	3.8	20
26	Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1356-1360.	1.7	20
27	Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater. Marine Chemistry, 2018, 202, 49-57.	2.3	19
28	Effects of sterilization techniques on chemodenitrification and N ₂ O production in tropical peat soil microcosms. Biogeosciences, 2019, 16, 4601-4612.	3.3	19
29	Cutting in-line with iron: ribosomal function and non-oxidative RNA cleavage. Nucleic Acids Research, 2020, 48, 8663-8674.	14.5	18
30	Defining the <i>Sphagnum</i> Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. MBio, 2022, 13, .	4.1	18
31	Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environmental Microbiology, 2017, 19, 3475-3486.	3.8	17
32	Speciesâ€Dependent Chromium Isotope Fractionation Across the Eastern Tropical North Pacific Oxygen Minimum Zone. Geochemistry, Geophysics, Geosystems, 2019, 20, 2499-2514.	2.5	17
33	Trace Metal Imaging of Sulfate-Reducing Bacteria and Methanogenic Archaea at Single-Cell Resolution by Synchrotron X-Ray Fluorescence Imaging. Geomicrobiology Journal, 2018, 35, 81-89.	2.0	13
34	Submarine volcanic morphology of the western Galápagos based on EM300 bathymetry and MR1 side-scan sonar. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	12
35	Microbial diversity and activity in Southern California salterns and bitterns: analogues for remnant ocean worlds. Environmental Microbiology, 2021, 23, 3825-3839.	3.8	12
36	Adaptation and Exaptation: From Small Molecules to Feathers. Journal of Molecular Evolution, 2022, 90, 166-175.	1.8	12

JENNIFER GLASS

#	Article	IF	CITATIONS
37	Hydrogenation reactions of carbon on Earth: Linking methane, margarine, and life. American Mineralogist, 2020, 105, 599-608.	1.9	9
38	Lanthanide rarity in natural waters: implications for microbial C1 metabolism. FEMS Microbiology Letters, 2020, 367, .	1.8	7
39	Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins: Structure, Function and Bioinformatics, 2021, 89, 232-241.	2.6	7
40	Microbes that Meddle with Metals. Microbe Magazine, 2015, 10, 197-202.	0.4	7
41	Mainly on the Plane: Deep Subsurface Bacterial Proteins Bind and Alter Clathrate Structure. Crystal Growth and Design, 2020, 20, 6290-6295.	3.0	5
42	Novel insights into the taxonomic diversity and molecular mechanisms of bacterial Mn(<scp>III</scp>) reduction. Environmental Microbiology Reports, 2020, 12, 583-593.	2.4	4
43	Microbial helpers allow cyanobacteria to thrive in ferruginous waters. Geobiology, 2021, 19, 510-520.	2.4	3
44	Simulâ€staining manganese oxides and microbial cells. Limnology and Oceanography: Methods, 2020, 18, 362-373.	2.0	2