
Zhen-zhong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/755185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Science Translational Medicine, 2022, 14, eabh2557.	12.4	26
2	Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
3	The Parabrachial Nucleus as a Key Regulator of Neuropathic Pain. Neuroscience Bulletin, 2021, 37, 1079-1081.	2.9	4
4	Resolution of Inflammatory Pain by Endogenous Chemerin and G Protein-Coupled Receptor ChemR23. Neuroscience Bulletin, 2021, 37, 1351-1356.	2.9	4
5	GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain, 2021, 144, 3405-3420.	7.6	34
6	Rational Design of a Modalityâ€Specific Inhibitor of TRPM8 Channel against Oxaliplatinâ€Induced Cold Allodynia. Advanced Science, 2021, 8, e2101717.	11.2	9
7	ls Optogenetic Activation of Vglut1-Positive Aβ Low-Threshold Mechanoreceptors Sufficient to Induce Tactile Allodynia in Mice after Nerve Injury?. Journal of Neuroscience, 2019, 39, 6202-6215.	3.6	28
8	Interleukin-17 Regulates Neuron-Glial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy. Cell Reports, 2019, 29, 2384-2397.e5.	6.4	87
9	Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Frontiers in Pharmacology, 2018, 9, 412.	3.5	68
10	GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. Journal of Clinical Investigation, 2018, 128, 3568-3582.	8.2	183
11	Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Scientific Reports, 2016, 6, 34356.	3.3	50
12	β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nature Communications, 2016, 7, 12531.	12.8	49
13	Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nature Medicine, 2015, 21, 1326-1331.	30.7	272
14	Extracellular MicroRNAs Activate Nociceptor Neurons to Elicit Pain via TLR7 and TRPA1. Neuron, 2014, 82, 47-54.	8.1	250
15	Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 2014, 24, 1374-1377.	12.0	125
16	Development of a Membrane-anchored Chemerin Receptor Agonist as a Novel Modulator of Allergic Airway Inflammation and Neuropathic Pain. Journal of Biological Chemistry, 2014, 289, 13385-13396.	3.4	24
17	Emerging targets in neuroinflammation-driven chronic pain. Nature Reviews Drug Discovery, 2014, 13, 533-548.	46.4	754
18	Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. Journal of Clinical Investigation, 2014, 124, 1173-1186.	8.2	171

ZHEN-ZHONG XU

#	Article	IF	CITATIONS
19	Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Annals of Neurology, 2013, 74, 490-495.	5.3	102
20	Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. Journal of NeuroImmune Pharmacology, 2013, 8, 37-41.	4.1	106
21	5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals. Journal of Neuroscience, 2012, 32, 6364-6372.	3.6	103
22	Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB Journal, 2012, 26, 1755-1765.	0.5	401
23	Acute Morphine Activates Satellite Glial Cells and Up-Regulates IL-1β in Dorsal Root Ganglia in Mice via Matrix Metalloprotease-9. Molecular Pain, 2012, 8, 1744-8069-8-18.	2.1	77
24	TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. Journal of Clinical Investigation, 2012, 122, 2195-2207.	8.2	143
25	Resolving TRPV1- and TNF-α-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. Journal of Neuroscience, 2011, 31, 15072-15085.	3.6	207
26	Emerging roles of resolvins in the resolution of inflammation and pain. Trends in Neurosciences, 2011, 34, 599-609.	8.6	298
27	Resolvins are potent analgesics for arthritic pain. British Journal of Pharmacology, 2011, 164, 274-277.	5.4	49
28	TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtypes 1 and 2. Pain, 2011, 152, 419-427.	4.2	205
29	Resolvin D2 Is a Potent Endogenous Inhibitor for Transient Receptor Potential Subtype V1/A1, Inflammatory Pain, and Spinal Cord Synaptic Plasticity in Mice: Distinct Roles of Resolvin D1, D2, and E1. Journal of Neuroscience, 2011, 31, 18433-18438.	3.6	210
30	The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain, 2010, 148, 309-319.	4.2	139
31	Toll-like receptor 7 mediates pruritus. Nature Neuroscience, 2010, 13, 1460-1462.	14.8	217
32	Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature Medicine, 2010, 16, 592-597.	30.7	503
33	Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. Experimental Neurology, 2009, 219, 146-155.	4.1	58
34	Matrix metalloprotease regulation of neuropathic pain. Trends in Pharmacological Sciences, 2009, 30, 336-340.	8.7	151
35	JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and Neuropathic Pain. Journal of Neuroscience, 2009, 29, 4096-4108.	3.6	497
36	Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature Medicine, 2008, 14, 331-336.	30.7	658

ZHEN-ZHONG XU

#	Article	IF	CITATIONS
37	Endogenous Tumor Necrosis Factor α (TNFα) Requires TNF Receptor Type 2 to Generate Heat Hyperalgesia in a Mouse Cancer Model. Journal of Neuroscience, 2008, 28, 5072-5081.	3.6	144
38	Interaction with Vesicle Luminal Protachykinin Regulates Surface Expression of δ-Opioid Receptors and Opioid Analgesia. Cell, 2005, 122, 619-631.	28.9	139
39	Activation of Delta Opioid Receptors Induces Receptor Insertion and Neuropeptide Secretion. Neuron, 2003, 37, 121-133.	8.1	158