Zhengping Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7551796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental, 2015, 162, 372-380.	20.2	375
2	Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B: Environmental, 2014, 158-159, 129-135.	20.2	344
3	Metal organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Journal of Materials Chemistry A, 2014, 2, 18775-18785.	10.3	210
4	Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis. Applied Catalysis B: Environmental, 2019, 244, 25-35.	20.2	149
5	Palladium nanoparticles immobilized on core–shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. Journal of Materials Chemistry A, 2014, 2, 19696-19706.	10.3	146
6	Fibrous nano-silica containing immobilized Ni@Au core–shell nanoparticles: A highly active and reusable catalyst for the reduction of 4-nitrophenol and 2-nitroaniline. Journal of Molecular Catalysis A, 2014, 395, 58-65.	4.8	98
7	Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catalysis Communications, 2015, 59, 21-25.	3.3	98
8	Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 1121-1130.	9.0	92
9	Biomass Sucroseâ€Derived Cobalt@Nitrogenâ€Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem, 2018, 11, 4156-4165.	6.8	92
10	Highly efficient and recyclable Ni MOF-derived N-doped magnetic mesoporous carbon-supported palladium catalysts for the hydrodechlorination of chlorophenols. Journal of Molecular Catalysis A, 2016, 423, 386-392.	4.8	90
11	Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines. Journal of Colloid and Interface Science, 2017, 501, 231-240.	9.4	83
12	Highly dispersed ultrafine palladium nanoparticles encapsulated in a triazinyl functionalized porous organic polymer as a highly efficient catalyst for transfer hydrogenation of aldehydes. Journal of Materials Chemistry A, 2018, 6, 18242-18251.	10.3	81
13	Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg ²⁺ and its application as an INHIBIT logic device. RSC Advances, 2013, 3, 2227-2233.	3.6	80
14	Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. ACS Applied Materials & amp; Interfaces, 2020, 12, 7285-7294.	8.0	79
15	Enhanced-electrocatalytic activity of Ni _{1â^x} Fe _x alloy supported on polyethyleneimine functionalized MoS ₂ nanosheets for hydrazine oxidation. RSC Advances, 2014, 4, 1988-1995.	3.6	76
16	Palladium clusters confined in triazinyl-functionalized COFs with enhanced catalytic activity. Applied Catalysis B: Environmental, 2019, 257, 117942.	20.2	76
17	Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids. Journal of Hazardous Materials, 2014, 270, 11-17.	12.4	74
18	A highly selective fluorescent chemosensor for Hg2+ based on rhodamine B and its application as a molecular logic gate. Dyes and Pigments, 2013, 97, 324-329.	3.7	73

#	Article	IF	CITATIONS
19	An "off–on–off―fluorescent probe for the sequential detection of Zn ²⁺ and hydrogen sulfide in aqueous solution. New Journal of Chemistry, 2014, 38, 1802-1808.	2.8	66
20	Biomass-derived phosphorus-doped carbon materials as efficient metal-free catalysts for selective aerobic oxidation of alcohols. Green Chemistry, 2019, 21, 5274-5283.	9.0	65
21	Hydrodechlorination and further hydrogenation of 4-chlorophenol to cyclohexanone in water over Pd nanoparticles modified N-doped mesoporous carbon microspheres. Chemical Engineering Journal, 2015, 270, 215-222.	12.7	64
22	Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications. Nanoscale, 2018, 10, 21466-21474.	5.6	62
23	A rhodamine B-based "turn-on―fluorescent sensor for detecting Cu2+ and sulfur anions in aqueous media. RSC Advances, 2014, 4, 5718.	3.6	59
24	In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. Journal of Materials Chemistry, 2012, 22, 13925.	6.7	57
25	Efficient chemoselective hydrogenation of halogenated nitrobenzenes over an easily prepared γ-Fe ₂ O ₃ -modified mesoporous carbon catalyst. Green Chemistry, 2017, 19, 1548-1554.	9.0	57
26	N,S co-doped hierarchically porous carbon materials for efficient metal-free catalysis. Green Chemistry, 2020, 22, 742-752.	9.0	55
27	Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction. Nanoscale, 2019, 11, 21513-21521.	5.6	53
28	Suzuki–Miyaura cross-coupling reactions catalyzed by efficient and recyclable Fe3O4@SiO2@mSiO2–Pd(II) catalyst. Catalysis Communications, 2014, 53, 47-52.	3.3	50
29	Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour. Journal of Luminescence, 2013, 134, 635-639.	3.1	49
30	Sequential recognition of zinc ion and hydrogen sulfide by a new quinoline derivative with logic gate behavior. RSC Advances, 2014, 4, 18270-18277.	3.6	47
31	Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Applied Catalysis B: Environmental, 2021, 298, 120510.	20.2	46
32	A highly active hydrazine fuel cell catalyst consisting of a Ni–Fe nanoparticle alloy plated on carbon materials by pulse reversal. RSC Advances, 2012, 2, 5038.	3.6	45
33	Pt coated Co nanoparticles supported on N-doped mesoporous carbon as highly efficient, magnetically recyclable and reusable catalyst for hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2017, 42, 27055-27065.	7.1	42
34	Facile preparation of fluffy N-doped carbon modified with Ag nanoparticles as a highly active and reusable catalyst for catalytic reduction of nitroarenes. Journal of Colloid and Interface Science, 2017, 506, 524-531.	9.4	42
35	Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation. Journal of Colloid and Interface Science, 2019, 533, 259-267.	9.4	41
36	Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH4. Journal of Colloid and Interface Science, 2019, 538, 720-730.	9.4	41

#	Article	IF	CITATIONS
37	Dansyl derivative functionalized Fe ₃ O ₄ @SiO ₂ fluorescent probe for detection and removal of Hg ²⁺ in aqueous solution. RSC Advances, 2013, 3, 1082-1088.	3.6	40
38	Gold nanoparticle modified magnetic fibrous silica microspheres as a highly efficient and recyclable catalyst for the reduction of 4-nitrophenol. New Journal of Chemistry, 2015, 39, 8623-8629.	2.8	37
39	A MOF-derived nickel based N-doped mesoporous carbon catalyst with high catalytic activity for the reduction of nitroarenes. RSC Advances, 2016, 6, 11749-11753.	3.6	37
40	Palladium nanoparticles supported on SiO2@Fe3O4@m-MnO2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. Molecular Catalysis, 2017, 433, 202-211.	2.0	36
41	Continuous solvent-free synthesis of imines over uip-γ-Al2O3-CeO2 catalyst in a fixed bed reactor. Applied Catalysis B: Environmental, 2020, 272, 118958.	20.2	35
42	Palladium nanoparticles dispersed on the hollow aluminosilicate microsphere@hierarchical γ-AlOOH as an excellent catalyst for the hydrogenation of nitroarenes under ambient conditions. Applied Surface Science, 2016, 390, 100-106.	6.1	34
43	Novel yolk–shell-structured Fe 3 O 4 @γ-AlOOH nanocomposite modified with Pd nanoparticles as a recyclable catalyst with excellent catalytic activity. Applied Surface Science, 2017, 416, 103-111.	6.1	34
44	Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. Journal of Colloid and Interface Science, 2018, 521, 132-140.	9.4	34
45	Ultrafine palladium nanoparticles confined in core–shell magnetic porous organic polymer nanospheres as highly efficient hydrogenation catalyst. Journal of Colloid and Interface Science, 2019, 554, 157-165.	9.4	34
46	Atomically dispersed Co-N4 sites anchored on N-doped carbon for aqueous phase transfer hydrogenation between nitroarenes and saturated N-heterocycles. Applied Catalysis B: Environmental, 2021, 299, 120681.	20.2	32
47	Ultrafine platinum nanoparticles modified on cotton derived carbon fibers as a highly efficient catalyst for hydrogen evolution from ammonia borane. International Journal of Hydrogen Energy, 2017, 42, 29244-29253.	7.1	31
48	Ru coated Co nanoparticles decorated on cotton derived carbon fibers as a highly efficient and magnetically recyclable catalyst for hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 1355-1364.	7.1	31
49	Two-dimensional covalent-organic-framework-derived nitrogen-rich carbon nanosheets modified with small Pd nanoparticles for the hydrodechlorination of chlorophenols and hydrogenation of phenol. Applied Catalysis A: General, 2018, 568, 130-138.	4.3	31
50	Selective Transfer Hydrogenation and N-Formylation of Nitroarenes by a Facilely Prepared N, S Co-doped Carbon-Encapsulated Cobalt Nanoparticle Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 5615-5623.	3.7	30
51	Coâ€MOFâ€Derived Hierarchical Mesoporous Yolkâ€shellâ€structured Nanoreactor for the Catalytic Reduction of Nitroarenes with Hydrazine Hydrate. ChemCatChem, 2019, 11, 3327-3338.	3.7	28
52	Ultrafine Pd nanoparticles immobilized on N-doped hollow carbon nanospheres with superior catalytic performance for the selective oxidation of 5-hydroxymethylfurfural and hydrogenation of nitroarenes. Journal of Colloid and Interface Science, 2019, 553, 588-597.	9.4	28
53	Ru clusters confined in Hydrogen-bonded organic frameworks for homogeneous catalytic hydrogenation of N-heterocyclic compounds with heterogeneous recyclability. Journal of Catalysis, 2022, 406, 19-27.	6.2	28
54	PdCo nanoparticles supported on carbon fibers derived from cotton: Maximum utilization of Pd atoms for efficient reduction of nitroarenes. Journal of Colloid and Interface Science, 2018, 524, 84-92.	9.4	27

#	Article	IF	CITATIONS
55	Immobilization of Pt nanoparticles in hollow mesoporous silica nanocapsules: An aggregation- and leaching-resistant catalyst. Journal of Colloid and Interface Science, 2018, 516, 407-415.	9.4	26
56	Renewable chitosan-derived cobalt@N-doped porous carbon for efficient aerobic esterification of alcohols under air. Nanoscale, 2019, 11, 17736-17745.	5.6	26
57	The role of reducing agent in perylene tetracarboxylic acid coating on graphene sheets enhances Pd nanoparticles-electrocalytic ethanol oxidation. Catalysis Science and Technology, 2013, 3, 2303.	4.1	25
58	Cobalt Nanoparticles Apically Encapsulated by Nitrogenâ€doped Carbon Nanotubes for Oxidative Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. ChemCatChem, 2019, 11, 5475-5486.	3.7	25
59	Highly selective oxidation of alcohols catalyzed by Cu(II)-Schiff base-SBA-15 with hydrogen peroxide in water. Journal of Porous Materials, 2013, 20, 277-284.	2.6	24
60	Aqueous-phase hydrodechlorination and further hydrogenation of chlorophenols to cyclohexanone in water over palladium nanoparticles modified dendritic mesoporous silica nanospheres catalyst. RSC Advances, 2015, 5, 20716-20723.	3.6	21
61	Facile fabrication of γ-Fe ₂ O ₃ -nanoparticle modified N-doped porous carbon materials for the efficient hydrogenation of nitroaromatic compounds. New Journal of Chemistry, 2017, 41, 10165-10173.	2.8	21
62	CeO2 immobilized on magnetic core-shell microparticles for one-pot synthesis of imines from benzyl alcohols and anilines: Support effects for activity and stability. Journal of Colloid and Interface Science, 2019, 538, 709-719.	9.4	21
63	Precisely controlled Pd nanoclusters confined in porous organic cages for size-dependent catalytic hydrogenation. Applied Catalysis B: Environmental, 2022, 315, 121487.	20.2	20
64	Quinoline Group Modified Carbon Nanotubes for the Detection of Zinc Ions. Nanoscale Research Letters, 2009, 4, 335-340.	5.7	19
65	Ultrathin Î ³ -Fe2O3 nanosheets as a highly efficient catalyst for the chemoselective hydrogenation of nitroaromatic compounds. Catalysis Communications, 2018, 107, 57-61.	3.3	18
66	Aminalâ€based Hypercrosslinked Polymer Modified with Small Palladium Nanoparticles for Efficiently Catalytic Reduction of Nitroarenes. ChemCatChem, 2018, 10, 4569-4577.	3.7	18
67	Fe-based N-doped dendritic catalysts for catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. Journal of Colloid and Interface Science, 2020, 565, 177-185.	9.4	17
68	Ultrafine Pd Nanoparticles Modified on Azine-Linked Covalent Organic Polymers for Efficient Catalytic Suzuki–Miyaura Coupling Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 12677-12685.	3.7	17
69	Palladium modified magnetic mesoporous carbon derived from metal–organic frameworks as a highly efficient and recyclable catalyst for hydrogenation of nitroarenes. RSC Advances, 2015, 5, 20987-20991.	3.6	15
70	Efficient and chemoselective hydrogenation of nitroarenes by γ-Fe ₂ O ₃ modified hollow mesoporous carbon microspheres. Inorganic Chemistry Frontiers, 2016, 3, 1332-1340.	6.0	15
71	Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Journal of Colloid and Interface Science, 2022, 623, 905-914.	9.4	15
72	Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehydestarch as complexant and reductant for antibacterial purposes. RSC Advances, 2013, 3, 918-922.	3.6	14

#	Article	IF	CITATIONS
73	Nickel and cobalt nanoparticles modified hollow mesoporous carbon microsphere catalysts for efficient catalytic reduction of widely used dyes. RSC Advances, 2016, 6, 99114-99119.	3.6	13
74	Nâ€Doped Hierarchical Porous Carbon Embedded Synergistic Bimetallic CoCu NPs with Unparalleled Catalytic Performance. ChemCatChem, 2019, 11, 2415-2422.	3.7	13
75	Iron oxide modified N-doped porous carbon derived from porous organic polymers as a highly-efficient catalyst for reduction of nitroarenes. Molecular Catalysis, 2020, 498, 111249.	2.0	13
76	Multistep protection strategy for preparation of atomically dispersed Fe–N catalysts for selective oxidation of ethylbenzene to acetophenone. Catalysis Science and Technology, 2022, 12, 641-651.	4.1	12
77	Atomically Dispersed Co Clusters Anchored on Nâ€doped Carbon Nanotubes for Efficient Dehydrogenation of Alcohols and Subsequent Conversion to Carboxylic Acids. ChemSusChem, 2021, 14, 4536-4545.	6.8	11
78	Selective oxidation of alcohols to high value-added carbonyl compounds using air over Co-Co3O4@NC catalysts. Chemical Engineering Journal, 2022, 434, 134545.	12.7	11
79	Catalytically Active Coâ^'N x Species Stabilized on Nitrogenâ€doped Porous Carbon for Efficient Hydrogenation and Dehydrogenation of Nâ€heteroarenes. ChemCatChem, 2020, 12, 4406-4415.	3.7	10
80	Eu(iii)-coupled graphene oxide as a luminescent material. New Journal of Chemistry, 2013, 37, 3861.	2.8	9
81	Biomass chitosan-derived nitrogen-doped carbon modified with iron oxide for the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. Molecular Catalysis, 2021, 499, 111293.	2.0	9
82	Nitrogen-doped carbon nanotubes by multistep pyrolysis process as a promising anode material for lithium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31, 2239-2244.	9.0	7
83	Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. Journal of Colloid and Interface Science, 2022, 606, 1340-1351.	9.4	7
84	Construction of a sandwich-like UiO-66-NH2@Pt@mSiO2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. Journal of Colloid and Interface Science, 2022, 606, 1524-1533.	9.4	7
85	Renewable Soybean PulpÂDerived Nâ€Doped Carbon Materials for Efficient Chemoselective Hydrogenation of Halogenated Nitrobenzenes. ChemistrySelect, 2019, 4, 4083-4091.	1.5	6
86	Selfâ€Template Construction of Highâ€Performance Co, Nâ€Decorated Carbon Nanotubes from a Novel Cobalt Dicyandiamide Molecule. ChemCatChem, 2021, 13, 2609-2617.	3.7	4
87	A Facile and Inâ€situ Methanolâ€mediated Fabrication of Low Pd Loading, Highâ€efficiency and Sizeâ€selectivity Pd@ZIFâ€8 Hydrogenation Catalyst. Chemistry - an Asian Journal, 2021, 16, 2952-2957.	3.3	1