Guoqiang Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550755/publications.pdf Version: 2024-02-01

CHOOLANG CH

#	Article	IF	CITATIONS
1	Mitofusins <i>Mfn1</i> and <i>Mfn2</i> Are Required to Preserve Glucose- but Not Incretin-Stimulated β-Cell Connectivity and Insulin Secretion. Diabetes, 2022, 71, 1472-1489.	0.3	14
2	A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for <i>Zfp800</i> in pancreas development. Development (Cambridge), 2021, 148, .	1.2	12
3	Postnatal maturation of calcium signaling in islets of Langerhans from neonatal mice. Cell Calcium, 2021, 94, 102339.	1.1	5
4	Temporal Transcriptome Analysis Reveals Dynamic Gene Expression Patterns Driving β-Cell Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 648791.	1.8	9
5	Microtubules and Gαo-signaling modulate the preferential secretion of young insulin secretory granules in islet β cells via independent pathways. PLoS ONE, 2021, 16, e0241939.	1.1	10
6	TRPM7 is a crucial regulator of pancreatic endocrine development and high-fat-diet-induced β-cell proliferation. Development (Cambridge), 2021, 148, .	1.2	5
7	Microtubules regulate pancreatic \hat{l}^2 -cell heterogeneity via spatiotemporal control of insulin secretion hot spots. ELife, 2021, 10, .	2.8	11
8	Myt Transcription Factors Prevent Stress-Response Gene Overactivation to Enable Postnatal Pancreatic β Cell Proliferation, Function, and Survival. Developmental Cell, 2020, 53, 390-405.e10.	3.1	11
9	Coregulator Sin3a Promotes Postnatal Murine β-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response. Diabetes, 2020, 69, 1219-1231.	0.3	9
10	Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes, 2020, 69, 1936-1947.	0.3	23
11	Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic Î ² Cells. Current Biology, 2019, 29, 2339-2350.e5.	1.8	20
12	Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Developmental Cell, 2019, 48, 49-63.e7.	3.1	36
13	GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Endocrinology, 2018, 159, 1062-1073.	1.4	21
14	Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues. Cell Reports, 2018, 23, 974-982.	2.9	101
15	Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Developmental Cell, 2018, 45, 347-361.e5.	3.1	73
16	Quantitative assessment of cell population diversity in single-cell landscapes. PLoS Biology, 2018, 16, e2006687.	2.6	40
17	ROCK-nmMyoll, Notch, and <i>Neurog3</i> gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development (Cambridge), 2018, 145, .	1.2	30
18	Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes and Development, 2017, 31, 383-398.	2.7	84

Guoqiang Gu

#	Article	IF	CITATIONS
19	Effective Isolation of Functional Islets from Neonatal Mouse Pancreas. Journal of Visualized Experiments, 2017, , .	0.2	11
20	The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E91-E102.	1.8	49
21	Pancreatic Inflammation Redirects Acinar to \hat{I}^2 Cell Reprogramming. Cell Reports, 2016, 17, 2028-2041.	2.9	24
22	Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19+- liver cells deficient for p53 and Rb. Oncotarget, 2016, 7, 54662-54675.	0.8	1
23	Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential. American Journal of Physiology - Renal Physiology, 2015, 309, G975-G987.	1.6	18
24	Endothelial Cells Control Pancreatic Cell Fate at Defined Stages through EGFL7 Signaling. Stem Cell Reports, 2015, 4, 181-189.	2.3	37
25	Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells. Developmental Cell, 2015, 34, 656-668.	3.1	90
26	Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nature Biotechnology, 2014, 32, 76-83.	9.4	159
27	Loss of Fbw7 Reprograms Adult Pancreatic Ductal Cells into α, Î′, and β Cells. Cell Stem Cell, 2014, 15, 139-153.	5.2	118
28	Adult Hepatocytes Are Generated by Self-Duplication Rather than Stem Cell Differentiation. Cell Stem Cell, 2014, 15, 340-349.	5.2	368
29	Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature, 2014, 514, 503-507.	13.7	335
30	Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells. Frontiers in Endocrinology, 2014, 5, 237.	1.5	41
31	Modulation of Golgiâ€associated microtubule nucleation throughout the cell cycle. Cytoskeleton, 2013, 70, 32-43.	1.0	32
32	Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12691-12696.	3.3	67
33	Nonâ€parallel recombination limits creâ€loxPâ€based reporters as precise indicators of conditional genetic manipulation. Genesis, 2013, 51, 436-442.	0.8	88
34	Epithelial Tissues Have Varying Degrees of Susceptibility to KrasG12D-Initiated Tumorigenesis in a Mouse Model. PLoS ONE, 2011, 6, e16786.	1.1	99
35	Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Developmental Biology, 2011, 359, 26-36.	0.9	68
36	Gαo Represses Insulin Secretion by Reducing Vesicular Docking in Pancreatic β-Cells. Diabetes, 2010, 59, 2522-2529.	0.3	31

GUOQIANG GU

#	Article	IF	CITATIONS
37	Genetic Labeling Does Not Detect Epithelial-to-Mesenchymal Transition of Cholangiocytes in Liver Fibrosis in Mice. Gastroenterology, 2010, 139, 987-998.	0.6	200
38	Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Developmental Biology, 2010, 339, 26-37.	0.9	131
39	Sustained <i>Neurog3</i> expression in hormone-expressing islet cells is required for endocrine maturation and function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9715-9720.	3.3	143
40	A CK19 ^{CreERT} knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis, 2008, 46, 318-323.	0.8	157
41	Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Developmental Biology, 2008, 317, 531-540.	0.9	90
42	Cre reconstitution allows for DNA recombination selectively in dual-marker-expressing cells in transgenic mice. Nucleic Acids Research, 2007, 35, e126-e126.	6.5	19
43	Temporal Control of Neurogenin3 Activity in Pancreas Progenitors Reveals Competence Windows for the Generation of Different Endocrine Cell Types. Developmental Cell, 2007, 12, 457-465.	3.1	300
44	Loss of Myt1 function partially compromises endocrine islet cell differentiation and pancreatic physiological function in the mouse. Mechanisms of Development, 2007, 124, 898-910.	1.7	64
45	The fringe molecules induce endocrine differentiation in embryonic endoderm by activating cMyt1/cMyt3. Developmental Biology, 2006, 297, 340-349.	0.9	23
46	Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development (Cambridge), 2004, 131, 165-179.	1.2	211
47	Direct lineage tracing reveals the ontogeny of pancreatic cell fates during mouse embryogenesis. Mechanisms of Development, 2003, 120, 35-43.	1.7	210
48	Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development (Cambridge), 2002, 129, 2447-2457.	1.2	1,336
49	Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development (Cambridge), 2002, 129, 2447-57.	1.2	703
50	Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2