List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intelligent Omni-Surfaces: Ubiquitous Wireless Transmission by Reflective-Refractive Metasurfaces. IEEE Transactions on Wireless Communications, 2022, 21, 219-233.	9.2	71
2	Compressive Sensing-Based Joint Activity and Data Detection for Grant-Free Massive IoT Access. IEEE Transactions on Wireless Communications, 2022, 21, 1851-1869.	9.2	27
3	Reconfigurable Intelligent Surface-Aided Quadrature Reflection Modulation for Simultaneous Passive Beamforming and Information Transfer. IEEE Transactions on Wireless Communications, 2022, 21, 1469-1481.	9.2	24
4	Trajectory Design for UAV-Based Internet of Things Data Collection: A Deep Reinforcement Learning Approach. IEEE Internet of Things Journal, 2022, 9, 3899-3912.	8.7	46
5	Massive Access in Media Modulation Based Massive Machine-Type Communications. IEEE Transactions on Wireless Communications, 2022, 21, 339-356.	9.2	12
6	Battery Recharging Time Models for Reconfigurable Intelligent Surfaces-Assisted Wireless Power Transfer Systems. IEEE Transactions on Green Communications and Networking, 2022, 6, 1173-1185.	5.5	8
7	Learning-Based Prediction, Rendering and Transmission for Interactive Virtual Reality in RIS-Assisted Terahertz Networks. IEEE Journal on Selected Areas in Communications, 2022, 40, 710-724.	14.0	26
8	On Maximizing the Sum Secret Key Rate for Reconfigurable Intelligent Surface-Assisted Multiuser Systems. IEEE Transactions on Information Forensics and Security, 2022, 17, 211-225.	6.9	28
9	Reconfigurable Intelligent Surface-Assisted Cell-Free Massive MIMO Systems Over Spatially-Correlated Channels. IEEE Transactions on Wireless Communications, 2022, 21, 5106-5128.	9.2	67
10	LiFi through Reconfigurable Intelligent Surfaces: A New Frontier for 6G?. IEEE Vehicular Technology Magazine, 2022, 17, 37-46.	3.4	45
11	Cascaded Composite Turbulence and Misalignment: Statistical Characterization and Applications to Reconfigurable Intelligent Surface-Empowered Wireless Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 3821-3836.	6.3	16
12	Learning to Estimate RIS-Aided mmWave Channels. IEEE Wireless Communications Letters, 2022, 11, 841-845.	5.0	15
13	Reconfigurable Intelligent Surfaces With Outdated Channel State Information: Centralized vs. Distributed Deployments. IEEE Transactions on Communications, 2022, 70, 2742-2756.	7.8	32
14	A Path to Smart Radio Environments: An Industrial Viewpoint on Reconfigurable Intelligent Surfaces. IEEE Wireless Communications, 2022, 29, 202-208.	9.0	81
15	Integrated Sensing and Communication Waveform Design With Sparse Vector Coding: Low Sidelobes and Ultra Reliability. IEEE Transactions on Vehicular Technology, 2022, 71, 4489-4494.	6.3	22
16	Reviewers and Editors Appreciation 2021. IEEE Communications Letters, 2022, 26, 224-224.	4.1	0
17	Performance Evaluation and Diversity Analysis of RIS-Assisted Communications Over Generalized Fading Channels in the Presence of Phase Noise. IEEE Open Journal of the Communications Society, 2022, 3, 593-607.	6.9	22
18	Fairness-Oriented Multiple RIS-Aided mmWave Transmission: Stochastic Optimization Methods. IEEE Transactions on Signal Processing, 2022, 70, 1402-1417.	5.3	5

#	Article	IF	CITATIONS
19	Distributed Learning for Wireless Communications: Methods, Applications and Challenges. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 326-342.	10.8	13
20	Holographic Integrated Sensing and Communication. IEEE Journal on Selected Areas in Communications, 2022, 40, 2114-2130.	14.0	28
21	A Prototype of Reconfigurable Intelligent Surface with Continuous Control of the Reflection Phase. IEEE Wireless Communications, 2022, 29, 70-77.	9.0	48
22	Intelligent Omni-Surfaces for Full-Dimensional Wireless Communications: Principles, Technology, and Implementation. IEEE Communications Magazine, 2022, 60, 39-45.	6.1	67
23	Controlling Smart Propagation Environments: Long-Term Versus Short-Term Phase Shift Optimization. , 2022, , .		8
24	Energy Efficiency Optimization of Reconfigurable Intelligent Surfaces With Electromagnetic Field Exposure Constraints. IEEE Signal Processing Letters, 2022, 29, 1447-1451.	3.6	9
25	Reconfigurable Intelligent Surface-Aided Multi-User Networks: Interplay Between NOMA and RIS. IEEE Wireless Communications, 2022, 29, 169-176.	9.0	33
26	MARISA: A Self-configuring Metasurfaces Absorption and Reflection Solution Towards 6G. , 2022, , .		15
27	Outage Performance Analysis of RIS-Assisted UAV Wireless Systems Under Disorientation and Misalignment. IEEE Transactions on Vehicular Technology, 2022, 71, 10712-10728.	6.3	18
28	A Novel RIS-Aided EMF-Aware Beamforming Using Directional Spreading, Truncation and Boosting. , 2022, , .		1
29	A Novel RIS-Aided EMF Exposure Aware Approach using an Angularly Equalized Virtual Propagation Channel. , 2022, , .		3
30	Reconfigurable Intelligent Surfaces With Reflection Pattern Modulation: Beamforming Design and Performance Analysis. IEEE Transactions on Wireless Communications, 2021, 20, 741-754.	9.2	102
31	Robust Probabilistic-Constrained Optimization for IRS-Aided MISO Communication Systems. IEEE Wireless Communications Letters, 2021, 10, 1-5.	5.0	22
32	Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement. IEEE Transactions on Wireless Communications, 2021, 20, 421-439.	9.2	685
33	Reconfigurable Intelligent Surfaces-Assisted Communications With Discrete Phase Shifts: How Many Quantization Levels Are Required to Achieve Full Diversity?. IEEE Wireless Communications Letters, 2021, 10, 358-362.	5.0	71
34	Ergodic Secrecy Rate of RIS-Assisted Communication Systems in the Presence of Discrete Phase Shifts and Multiple Eavesdroppers. IEEE Wireless Communications Letters, 2021, 10, 629-633.	5.0	35
35	On the Optimal Number of Reflecting Elements for Reconfigurable Intelligent Surfaces. IEEE Wireless Communications Letters, 2021, 10, 464-468.	5.0	34
36	Beamforming Through Reconfigurable Intelligent Surfaces in Single-User MIMO Systems: SNR Distribution and Scaling Laws in the Presence of Channel Fading and Phase Noise. IEEE Wireless Communications Letters, 2021, 10, 77-81.	5.0	66

#	Article	IF	CITATIONS
37	Adaptive Coding and Channel Shaping Through Reconfigurable Intelligent Surfaces: An Information-Theoretic Analysis. IEEE Transactions on Communications, 2021, 69, 7320-7334.	7.8	15
38	Reconfigurable Intelligent Surface Aided Power Control for Physical-Layer Broadcasting. IEEE Transactions on Communications, 2021, 69, 7821-7836.	7.8	14
39	Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Communications Surveys and Tutorials, 2021, 23, 1546-1577.	39.4	520
40	Cooperative Multi-RIS Communications for Wideband mmWave MISO-OFDM Systems. IEEE Wireless Communications Letters, 2021, 10, 2360-2364.	5.0	16
41	MIMO Interference Channels Assisted by Reconfigurable Intelligent Surfaces: Mutual Coupling Aware Sum-Rate Optimization Based on a Mutual Impedance Channel Model. IEEE Wireless Communications Letters, 2021, 10, 2624-2628.	5.0	32
42	Reconfigurable Intelligent Surfaces Aided mmWave NOMA: Joint Power Allocation, Phase Shifts, and Hybrid Beamforming Optimization. IEEE Transactions on Wireless Communications, 2021, 20, 8393-8409.	9.2	62
43	Intelligent Reflecting Surfaces: Sum-Rate Optimization Based on Statistical Position Information. IEEE Transactions on Communications, 2021, 69, 7121-7136.	7.8	57
44	Overhead-Aware Design of Reconfigurable Intelligent Surfaces in Smart Radio Environments. IEEE Transactions on Wireless Communications, 2021, 20, 126-141.	9.2	103
45	Stochastic Learning-Based Robust Beamforming Design for RIS-Aided Millimeter-Wave Systems in the Presence of Random Blockages. IEEE Transactions on Vehicular Technology, 2021, 70, 1057-1061.	6.3	45
46	Performance Analysis of a Two–Tile Reconfigurable Intelligent Surface Assisted 2 × 2 MIMO System. IEEE Wireless Communications Letters, 2021, 10, 493-497.	5.0	6
47	Analysis and Optimization for RIS-Aided Multi-Pair Communications Relying on Statistical CSI. IEEE Transactions on Vehicular Technology, 2021, 70, 3897-3901.	6.3	58
48	Intelligent Spectrum Learning for Wireless Networks With Reconfigurable Intelligent Surfaces. IEEE Transactions on Vehicular Technology, 2021, 70, 3920-3925.	6.3	43
49	End-to-End Mutual Coupling Aware Communication Model for Reconfigurable Intelligent Surfaces: An Electromagnetic-Compliant Approach Based on Mutual Impedances. IEEE Wireless Communications Letters, 2021, 10, 938-942.	5.0	82
50	Performance Analysis of RIS-Aided Systems With Practical Phase Shift and Amplitude Response. IEEE Transactions on Vehicular Technology, 2021, 70, 4501-4511.	6.3	48
51	Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access. IEEE Transactions on Wireless Communications, 2021, 20, 3137-3151.	9.2	99
52	Reconfigurable Intelligent Surface-Based Quadrature Reflection Modulation. , 2021, , .		5
53	Al-Assisted MAC for Reconfigurable Intelligent-Surface-Aided Wireless Networks: Challenges and Opportunities. IEEE Communications Magazine, 2021, 59, 21-27.	6.1	32
54	Reconfigurable Intelligent Surface-Assisted Ambient Backscatter Communications – Experimental Assessment. , 2021, , .		32

#	Article	IF	CITATIONS
55	Mutual Coupling and Unit Cell Aware Optimization for Reconfigurable Intelligent Surfaces. IEEE Wireless Communications Letters, 2021, 10, 1183-1187.	5.0	34
56	Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance. IEEE Transactions on Wireless Communications, 2021, 20, 3710-3722.	9.2	24
57	Coverage Analysis and Scaling Laws in Ultra-Dense Networks. IEEE Transactions on Communications, 2021, 69, 4158-4171.	7.8	3
58	Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions. IEEE Communications Magazine, 2021, 59, 14-20.	6.1	354
59	Interference Analysis in Reconfigurable Intelligent Surface-Assisted Multiple-Input Multiple-Output Systems. , 2021, , .		2
60	On the Performance of RIS-Assisted Dual-Hop Mixed RF-UWOC Systems. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 340-353.	7.9	33
61	Achievable Rate Optimization for MIMO Systems With Reconfigurable Intelligent Surfaces. IEEE Transactions on Wireless Communications, 2021, 20, 3865-3882.	9.2	96
62	Wireless Environment as a Service Enabled by Reconfigurable Intelligent Surfaces: The RISE-6G Perspective. , 2021, , .		73
63	Single-RF Multi-User Communication Through Reconfigurable Intelligent Surfaces: An Information-Theoretic Analysis. , 2021, , .		7
64	New Trends in Stochastic Geometry for Wireless Networks: A Tutorial and Survey. Proceedings of the IEEE, 2021, 109, 1200-1252.	21.3	54
65	Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks. Science China Information Sciences, 2021, 64, 1.	4.3	52
66	Terahertz Massive MIMO With Holographic Reconfigurable Intelligent Surfaces. IEEE Transactions on Communications, 2021, 69, 4732-4750.	7.8	122
67	K-Means Clustering-Aided Non-Coherent Detection for Molecular Communications. IEEE Transactions on Communications, 2021, 69, 5456-5470.	7.8	9
68	Model-Driven Deep Learning Based Channel Estimation and Feedback for Millimeter-Wave Massive Hybrid MIMO Systems. IEEE Journal on Selected Areas in Communications, 2021, 39, 2388-2406.	14.0	57
69	Optimization of RIS-Aided MIMO Systems Via the Cutoff Rate. IEEE Wireless Communications Letters, 2021, 10, 1692-1696.	5.0	17
70	Uplink Achievable Rate Maximization for Reconfigurable Intelligent Surface Aided Millimeter Wave Systems With Resolution-Adaptive ADCs. IEEE Wireless Communications Letters, 2021, 10, 1608-1612.	5.0	19
71	Single-RF MIMO: From Spatial Modulation to Metasurface-Based Modulation. IEEE Wireless Communications, 2021, 28, 88-95.	9.0	50
72	On the Path-Loss of Reconfigurable Intelligent Surfaces: An Approach Based on Green's Theorem Applied to Vector Fields. IEEE Transactions on Communications, 2021, 69, 5573-5592.	7.8	82

#	Article	IF	CITATIONS
73	QoS-Driven Spectrum Sharing for Reconfigurable Intelligent Surfaces (RISs) Aided Vehicular Networks. IEEE Transactions on Wireless Communications, 2021, 20, 5969-5985.	9.2	49
74	Reconfigurable Intelligent Surface-Assisted Aerial-Terrestrial Communications via Multi-Task Learning. IEEE Journal on Selected Areas in Communications, 2021, 39, 3035-3050.	14.0	57
75	Robust Secure UAV Communications With the Aid of Reconfigurable Intelligent Surfaces. IEEE Transactions on Wireless Communications, 2021, 20, 6402-6417.	9.2	126
76	Wireless Fingerprinting Localization in Smart Environments Using Reconfigurable Intelligent Surfaces. IEEE Access, 2021, 9, 135526-135541.	4.2	19
77	On the Achievable Sum-rate of the RIS-aided MIMO Broadcast Channel : Invited Paper. , 2021, , .		1
78	Data-driven and Model-driven Deep Learning Detection for RIS-aided Spatial Modulation. , 2021, , .		5
79	Treating Interference as Noise in Cellular Networks: A Stochastic Geometry Approach. IEEE Transactions on Wireless Communications, 2020, 19, 1918-1932.	9.2	3
80	On the Mean Interference-to-Signal Ratio in Spatially Correlated Cellular Networks. IEEE Wireless Communications Letters, 2020, 9, 358-362.	5.0	5
81	Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE Journal on Selected Areas in Communications, 2020, 38, 2450-2525.	14.0	1,365
82	On the Energy Efficiency of Heterogeneous Cellular Networks With Renewable Energy Sources—A Stochastic Geometry Framework. IEEE Transactions on Wireless Communications, 2020, 19, 6752-6770.	9.2	19
83	Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wireless Communications, 2020, 27, 118-125.	9.0	699
84	Analytical Modeling of the Path-Loss for Reconfigurable Intelligent Surfaces – Anomalous Mirror or Scatterer ?. , 2020, , .		77
85	Channel Capacity Optimization Using Reconfigurable Intelligent Surfaces in Indoor mmWave Environments. , 2020, , .		63
86	Intelligent Reflecting Surface Aided Network: Power Control for Physical-Layer Broadcasting. , 2020, ,		40
87	System-Level Optimization in Poisson Cellular Networks: An Approach Based on the Generalized Benders Decomposition. IEEE Wireless Communications Letters, 2020, 9, 1773-1777.	5.0	4
88	Network-Coded Cooperative Systems With Generalized User-Relay Selection. IEEE Transactions on Wireless Communications, 2020, 19, 7251-7264.	9.2	6
89	Wireless 2.0: Toward an Intelligent Radio Environment Empowered by Reconfigurable Meta-Surfaces and Artificial Intelligence. IEEE Vehicular Technology Magazine, 2020, 15, 74-82.	3.4	50
90	Polarization-Based Reconfigurable Tags for Robust Ambient Backscatter Communications. IEEE Open Journal of the Communications Society, 2020, 1, 1140-1152.	6.9	8

#	Article	IF	CITATIONS
91	Beyond Max-SNR: Joint Encoding for Reconfigurable Intelligent Surfaces. , 2020, , .		32
92	Robust Beamforming Design for Intelligent Reflecting Surface Aided MISO Communication Systems. IEEE Wireless Communications Letters, 2020, 9, 1658-1662.	5.0	185
93	Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access, 2020, 8, 45913-45923.	4.2	432
94	Dual-Hop Spatial Modulation With a Relay Transmitting its Own Information. IEEE Transactions on Wireless Communications, 2020, 19, 4449-4463.	9.2	14
95	Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wireless Communications, 2020, 27, 16-23.	9.0	143
96	On the Performance of RIS-Assisted Dual-Hop UAV Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 10385-10390.	6.3	180
97	Deep Denoising Neural Network Assisted Compressive Channel Estimation for mmWave Intelligent Reflecting Surfaces. IEEE Transactions on Vehicular Technology, 2020, 69, 9223-9228.	6.3	177
98	Secrecy Performance Analysis of RIS-Aided Wireless Communication Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 12296-12300.	6.3	184
99	Reconfigurable Intelligent Surfaces vs. Relaying: Differences, Similarities, and Performance Comparison. IEEE Open Journal of the Communications Society, 2020, 1, 798-807.	6.9	445
100	Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming. IEEE Wireless Communications Letters, 2020, 9, 716-720.	5.0	378
101	Spectral and Energy Efficiency of IRS-Assisted MISO Communication With Hardware Impairments. IEEE Wireless Communications Letters, 2020, 9, 1366-1369.	5.0	119
102	On the Performance of Reconfigurable Intelligent Surface-Aided Cell-Free Massive MIMO Uplink. , 2020, , .		20
103	EiC Farewell and Welcome to New EiC. IEEE Communications Letters, 2019, 23, 1113-1114.	4.1	0
104	Molecular Communications: Model-Based and Data-Driven Receiver Design and Optimization. IEEE Access, 2019, 7, 53555-53565.	4.2	16
105	Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access, 2019, 7, 116753-116773.	4.2	1,743
106	On the meta distribution in spatially correlated non-Poisson cellular networks. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	5
107	Generalized User-Relay Selection in Network-Coded Cooperation Systems. , 2019, , .		2

108 STORNS: Stochastic Radio Access Network Slicing. , 2019, , .

10

#	Article	IF	CITATIONS
109	Model-Aided Wireless Artificial Intelligence: Embedding Expert Knowledge in Deep Neural Networks for Wireless System Optimization. IEEE Vehicular Technology Magazine, 2019, 14, 60-69.	3.4	120
110	Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?. IEEE Transactions on Communications, 2019, 67, 7331-7376.	7.8	383
111	A Survey on Spatial Modulation in Emerging Wireless Systems: Research Progresses and Applications. IEEE Journal on Selected Areas in Communications, 2019, 37, 1949-1972.	14.0	291
112	On muting mobile terminals for uplink interference mitigation in HetNets—system-level analysis via stochastic geometry. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	3
113	Reflection probability in wireless networks with metasurface-coated environmental objects: an approach based on random spatial processes. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	69
114	Spatial modulation based on reconfigurable antennas: performance evaluation by using the prototype of a reconfigurable antenna. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	7
115	Outage Analysis of Distributed CDD Systems with Mixture Interference. , 2019, , .		0
116	Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	2.4	1,020
117	Relay Selection in Network-Coded Cooperative MIMO Systems. IEEE Transactions on Communications, 2019, 67, 5346-5361.	7.8	9
118	SDN-Enabled MIMO Heterogeneous Cooperative Networks With Flexible Cell Association. IEEE Transactions on Wireless Communications, 2019, 18, 2037-2050.	9.2	8
119	Distributed Cyclic Delay Diversity Systems With Spatially Distributed Interferers. IEEE Transactions on Wireless Communications, 2019, 18, 2066-2079.	9.2	10
120	A Tractable Closed-Form Expression of the Coverage Probability in Poisson Cellular Networks. IEEE Wireless Communications Letters, 2019, 8, 249-252.	5.0	19
121	Spectral-Energy Efficiency Pareto Front in Cellular Networks: A Stochastic Geometry Framework. IEEE Wireless Communications Letters, 2019, 8, 424-427.	5.0	16
122	System-Level Modeling and Optimization of the Energy Efficiency in Cellular Networks—A Stochastic Geometry Framework. IEEE Transactions on Wireless Communications, 2018, 17, 2539-2556.	9.2	71
123	Secrecy Analysis of Distributed CDD-Based Cooperative Systems With Deliberate Interference. IEEE Transactions on Wireless Communications, 2018, 17, 7865-7878.	9.2	9
124	Receiver Design in Molecular Communications: An Approach Based on Artificial Neural Networks. , 2018, , .		16
125	A Decomposition Framework for Optimal Edge-Cache Leasing. IEEE Journal on Selected Areas in Communications, 2018, 36, 1345-1359.	14.0	17
126	Secrecy Performance Analysis of Distributed CDD Based Cooperative Systems with Jamming. , 2018, , .		3

Secrecy Performance Analysis of Distributed CDD Based Cooperative Systems with Jamming. , 2018, , . 126

#	ARTICLE	IF	CITATIONS
127	Inhomogeneous Double Thinning—Modeling and Analysis of Cellular Networks by Using Inhomogeneous Poisson Point Processes. IEEE Transactions on Wireless Communications, 2018, 17, 5162-5182.	9.2	24
128	Performance Analysis of UAV Enabled Disaster Recovery Networks: A Stochastic Geometric Framework Based on Cluster Processes. IEEE Access, 2018, 6, 26215-26230.	4.2	97
129	System-Level Analysis and Optimization of Cellular Networks With Simultaneous Wireless Information and Power Transfer: Stochastic Geometry Modeling. IEEE Transactions on Vehicular Technology, 2017, 66, 2251-2275.	6.3	71
130	Secrecy Outage Analysis for Downlink Transmissions in the Presence of Randomly Located Eavesdroppers. IEEE Transactions on Information Forensics and Security, 2017, 12, 1195-1206.	6.9	88
131	On the Feasibility of Full-Duplex Relaying in Multiple-Antenna Cellular Networks. IEEE Transactions on Communications, 2017, 65, 2234-2249.	7.8	12
132	Massive MIMO-Enabled Full-Duplex Cellular Networks. IEEE Transactions on Communications, 2017, 65, 4734-4750.	7.8	53
133	Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access, 2017, 5, 16693-16746.	4.2	622
134	On Simultaneous Wireless Information and Power Transfer for Receive Spatial Modulation. IEEE Access, 2017, 5, 23204-23211.	4.2	9
135	Spatial modulation based on reconfigurable antennas $\hat{a} \in $ A new air interface for the IoT. , 2017, , .		16
136	A Generalized Transmit and Receive Diversity Condition for Feedback-Assisted MIMO Systems: Theory and Applications in Full-Duplex Spatial Modulation. IEEE Transactions on Signal Processing, 2017, 65, 6505-6519.	5.3	13
137	Performance Analysis of Distributed Single Carrier Systems With Distributed Cyclic Delay Diversity. IEEE Transactions on Communications, 2017, 65, 5514-5528.	7.8	29
138	The Intensity Matching Approach: A Tractable Stochastic Geometry Approximation to System-Level Analysis of Cellular Networks. IEEE Transactions on Wireless Communications, 2016, 15, 5963-5983.	9.2	94
139	Enhanced-Reliability Cyclic Generalized Spatial-and-Temporal Modulation. IEEE Communications Letters, 2016, 20, 2374-2377.	4.1	21
140	Stochastic Geometry Modeling and System-Level Analysis of Uplink Heterogeneous Cellular Networks With Multi-Antenna Base Stations. IEEE Transactions on Communications, 2016, 64, 2453-2476.	7.8	69
141	Modeling and Analysis of Wireless Power Transfer in Heterogeneous Cellular Networks. IEEE Transactions on Communications, 2016, 64, 5290-5303.	7.8	46
142	Analytical Modeling of Interference Aware Power Control for the Uplink of Heterogeneous Cellular Networks. IEEE Transactions on Wireless Communications, 2016, 15, 6742-6757.	9.2	33
143	Distributed Spatial Modulation: A Cooperative Diversity Protocol for Half-Duplex Relay-Aided Wireless Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 2947-2964.	6.3	107
144	Stochastic Geometry Modeling and Analysis of Multi-Tier Millimeter Wave Cellular Networks. IEEE Transactions on Wireless Communications, 2015, 14, 5038-5057.	9.2	303

#	Article	IF	CITATIONS
145	On the Diversity of Network-Coded Cooperation With Decode-and-Forward Relay Selection. IEEE Transactions on Wireless Communications, 2015, 14, 4369-4378.	9.2	33
146	Stochastic Geometry Modeling and Performance Evaluation of MIMO Cellular Networks Using the Equivalent-in-Distribution (EiD)-Based Approach. IEEE Transactions on Communications, 2015, 63, 977-996.	7.8	57
147	Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 2015, 53, 20-27.	6.1	838
148	Stochastic Geometry Modeling and System-Level Analysis & amp; Optimization of Relay-Aided Downlink Cellular Networks. IEEE Transactions on Communications, 2015, 63, 4063-4085.	7.8	33
149	Design Guidelines for Spatial Modulation. IEEE Communications Surveys and Tutorials, 2015, 17, 6-26.	39.4	516
150	Stochastic Geometry Modeling of Cellular Networks. , 2015, , .		76
151	Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation. Proceedings of the IEEE, 2014, 102, 56-103.	21.3	1,206
152	Stochastic Geometry Modeling of Coverage and Rate of Cellular Networks Using the Gil-Pelaez Inversion Theorem. IEEE Communications Letters, 2014, 18, 1575-1578.	4.1	74
153	On the Achievable Diversity of Repetition-Based and Relay Selection Network-Coded Cooperation. IEEE Transactions on Communications, 2014, 62, 2296-2313.	7.8	25
154	On Transmit Diversity for Spatial Modulation MIMO: Impact of Spatial Constellation Diagram and Shaping Filters at the Transmitter. IEEE Transactions on Vehicular Technology, 2013, 62, 2507-2531.	6.3	174
155	Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels: A Stochastic Geometry Approach. IEEE Transactions on Communications, 2013, 61, 3050-3071.	7.8	212
156	On Diversity Order and Coding Gain of Multisource Multirelay Cooperative Wireless Networks With Binary Network Coding. IEEE Transactions on Vehicular Technology, 2013, 62, 1138-1157.	6.3	49
157	Practical Implementation of Spatial Modulation. IEEE Transactions on Vehicular Technology, 2013, 62, 4511-4523.	6.3	229
158	Error Performance and Diversity Analysis of Multi-Source Multi-Relay Wireless Networks with Binary Network Coding and Cooperative MRC. IEEE Transactions on Wireless Communications, 2013, 12, 2883-2903.	9.2	37
159	Energy Evaluation of Spatial Modulation at a Multi-Antenna Base Station. , 2013, , .		109
160	Bit Error Probability of SM-MIMO Over Generalized Fading Channels. IEEE Transactions on Vehicular Technology, 2012, 61, 1124-1144.	6.3	479
161	Spatial modulation for multiple-antenna wireless systems: a survey. , 2011, 49, 182-191.		675
162	Channel Capacity Over Generalized Fading Channels: A Novel MGF-Based Approach for Performance Analysis and Design of Wireless Communication Systems. IEEE Transactions on Vehicular Technology, 2010, 59, 127-149.	6.3	123

#	Article	IF	CITATIONS
163	A Unified Framework for Performance Analysis of CSI-Assisted Cooperative Communications over Fading Channels. IEEE Transactions on Communications, 2009, 57, 2551-2557.	7.8	109
164	On the cumulative distribution function of quadratic-form receivers over generalized fading channels with tone interference. IEEE Transactions on Communications, 2009, 57, 2122-2137.	7.8	14
165	Wireless physical-layer security: The challenges ahead. , 2009, , .		16