
Tallie Z Baram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor–Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. Biological Psychiatry Global Open Science, 2023, 3, 99-109.	2.2	19
2	Neurodevelopmental origins of substance use disorders: Evidence from animal models of earlyâ€life adversity and addiction. European Journal of Neuroscience, 2022, 55, 2170-2195.	2.6	28
3	Developmental Trajectories of Anhedonia in Preclinical Models. Current Topics in Behavioral Neurosciences, 2022, , 23-41.	1.7	5
4	A cross-species assay demonstrates that reward responsiveness is enduringly impacted by adverse, unpredictable early-life experiences. Neuropsychopharmacology, 2022, 47, 767-775.	5.4	21
5	Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Reports, 2022, 38, 110600.	6.4	63
6	Principles of emotional brain circuit maturation. Science, 2022, 376, 1055-1056.	12.6	26
7	Enduring disruption of reward and stress circuit activities by early-life adversity in male rats. Translational Psychiatry, 2022, 12, .	4.8	14
8	Contribution of earlyâ€life unpredictability to neuropsychiatric symptom patterns in adulthood. Depression and Anxiety, 2022, 39, 706-717.	4.1	18
9	On the early life origins of vulnerability to opioid addiction. Molecular Psychiatry, 2021, 26, 4409-4416.	7.9	44
10	Augmented seizure susceptibility and hippocampal epileptogenesis in a translational mouse model of febrile status epilepticus. Epilepsia, 2021, 62, 647-658.	5.1	9
11	The Developmental Origins of Opioid Use Disorder and Its Comorbidities. Frontiers in Human Neuroscience, 2021, 15, 601905.	2.0	14
12	Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Frontiers in Neurology, 2021, 12, 615802.	2.4	12
13	Prenatal maternal mood entropy is associated with child neurodevelopment Emotion, 2021, 21, 489-498.	1.8	17
14	Functional Connectivity of the Human Paraventricular Thalamic Nucleus: Insights From High Field Functional MRI. Frontiers in Integrative Neuroscience, 2021, 15, 662293.	2.1	11
15	A predictable home environment may protect child mental health during the COVID-19 pandemic. Neurobiology of Stress, 2021, 14, 100291.	4.0	98
16	The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Frontiers in Behavioral Neuroscience, 2021, 15, 673162.	2.0	9
17	Recurrent febrile seizures alter intrahippocampal temporal coordination but do not cause spatial learning impairments. Epilepsia, 2021, 62, 3117-3130.	5.1	9
18	Aberrant Maturation of the Uncinate Fasciculus Follows Exposure to Unpredictable Patterns of Maternal Signals. Journal of Neuroscience, 2021, 41, 1242-1250.	3.6	31

#	Article	IF	CITATIONS
19	Unexpected Role of Physiological Estrogen in Acute Stress-Induced Memory Deficits. Journal of Neuroscience, 2021, 41, 648-662.	3.6	26
20	Early life adversity in male mice sculpts reward circuits. Neurobiology of Stress, 2021, 15, 100409.	4.0	18
21	Mechanisms by which early-life experiences promote enduring stress resilience or vulnerability. , 2020, , 165-180.		1
22	Blocking CRH receptors in adults mitigates age-related memory impairments provoked by early-life adversity. Neuropsychopharmacology, 2020, 45, 515-523.	5.4	18
23	Plasticity of the Reward Circuitry After Early-Life Adversity: Mechanisms and Significance. Biological Psychiatry, 2020, 87, 875-884.	1.3	72
24	Neurodevelopmental Optimization after Early-Life Adversity: Cross-Species Studies to Elucidate Sensitive Periods and Brain Mechanisms to Inform Early Intervention. Trends in Neurosciences, 2020, 43, 744-751.	8.6	82
25	Unexpected Transcriptional Programs Contribute to Hippocampal Memory Deficits and Neuronal Stunting after Early-Life Adversity. Cell Reports, 2020, 33, 108511.	6.4	24
26	Unpredictable maternal behavior is associated with a blunted infant cortisol response. Developmental Psychobiology, 2020, 62, 882-888.	1.6	23
27	A novel mouse model for vulnerability to alcohol dependence induced by early-life adversity. Neurobiology of Stress, 2020, 13, 100269.	4.0	24
28	Multiple Simultaneous Acute Stresses in Mice: Single or Repeated Induction. Bio-protocol, 2020, 10, e3699.	0.4	8
29	Intra-individual changes in methylome profiles: an epigenetic â€~scar' of early-life adversity?. Neuropsychopharmacology, 2020, 45, 218-218.	5.4	0
30	Across continents and demographics, unpredictable maternal signals are associated with children's cognitive function. EBioMedicine, 2019, 46, 256-263.	6.1	36
31	Early-life adversity and neurological disease: age-old questions and novel answers. Nature Reviews Neurology, 2019, 15, 657-669.	10.1	108
32	The influence of unpredictable, fragmented parental signals on the developing brain. Frontiers in Neuroendocrinology, 2019, 53, 100736.	5.2	79
33	Construction and disruption of spatial memory networks during development. Learning and Memory, 2019, 26, 206-218.	1.3	24
34	Estimating the Entropy Rate of Finite Markov Chains With Application to Behavior Studies. Journal of Educational and Behavioral Statistics, 2019, 44, 282-308.	1.7	25
35	New viralâ€genetic mapping uncovers an enrichment of corticotropinâ€releasing hormoneâ€expressing neuronal inputs to the nucleus accumbens from stressâ€related brain regions. Journal of Comparative Neurology, 2019, 527, 2474-2487.	1.6	45
36	Programming of Stress-Sensitive Neurons and Circuits by Early-Life Experiences. Frontiers in Behavioral Neuroscience, 2019, 13, 30.	2.0	32

#	Article	IF	CITATIONS
37	Cover Image, Volume 527, Issue 15. Journal of Comparative Neurology, 2019, 527, C1.	1.6	Ο
38	Parental smartphone use and children's mental outcomes: a neuroscience perspective. Neuropsychopharmacology, 2019, 44, 239-240.	5.4	5
39	Hyper-diversity of CRH interneurons in mouse hippocampus. Brain Structure and Function, 2019, 224, 583-598.	2.3	19
40	Measuring novel antecedents of mental illness: the Questionnaire of Unpredictability in Childhood. Neuropsychopharmacology, 2019, 44, 876-882.	5.4	52
41	Dexamethasone Attenuates Hyperexcitability Provoked by Experimental Febrile Status Epilepticus. ENeuro, 2019, 6, ENEURO.0430-19.2019.	1.9	27
42	Intra-individual methylomics detects the impact of early-life adversity. Life Science Alliance, 2019, 2, e201800204.	2.8	8
43	Febrile Seizures and Their Contribution to Temporal Lobe Epilepsy and Associated Cognitive Problems. , 2019, , 129-149.		0
44	Cortical Thinning and Neuropsychiatric Outcomes in Children Exposed to Prenatal Adversity: A Role for Placental CRH?. American Journal of Psychiatry, 2018, 175, 471-479.	7.2	53
45	Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches. Epigenetics, 2018, 13, 318-330.	2.7	21
46	Network specialization during adolescence: Hippocampal effective connectivity in boys and girls. NeuroImage, 2018, 175, 402-412.	4.2	18
47	Early-life adversity facilitates acquisition of cocaine self-administration and induces persistent anhedonia. Neurobiology of Stress, 2018, 8, 57-67.	4.0	66
48	Anhedonia Following Early-Life Adversity Involves Aberrant Interaction of Reward and Anxiety Circuits and Is Reversed by Partial Silencing of Amygdala Corticotropin-Releasing Hormone Gene. Biological Psychiatry, 2018, 83, 137-147.	1.3	146
49	Prenatal maternal mood patterns predict child temperament and adolescent mental health. Journal of Affective Disorders, 2018, 228, 83-90.	4.1	87
50	Epilepsyâ€predictive magnetic resonance imaging changes following experimental febrile status epilepticus: Are they translatable to the clinic?. Epilepsia, 2018, 59, 2005-2018.	5.1	11
51	Does Anhedonia Presage Increased Risk of Posttraumatic Stress Disorder?. Current Topics in Behavioral Neurosciences, 2018, 38, 249-265.	1.7	25
52	Enduring Memory Impairments Provoked by Developmental Febrile Seizures Are Mediated by Functional and Structural Effects of Neuronal Restrictive Silencing Factor. Journal of Neuroscience, 2017, 37, 3799-3812.	3.6	55
53	Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress, 2017, 20, 421-448.	1.8	263
54	New insights into early-life stress and behavioral outcomes. Current Opinion in Behavioral Sciences, 2017, 14, 133-139.	3.9	89

#	Article	IF	CITATIONS
55	Exposure to unpredictable maternal sensory signals influences cognitive development across species. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10390-10395.	7.1	131
56	Neuroinflammation imaging markers for epileptogenesis. Epilepsia, 2017, 58, 11-19.	5.1	41
57	Abnormal dendritic maturation of developing cortical neurons exposed to corticotropin releasing hormone (CRH): Insights into effects of prenatal adversity?. PLoS ONE, 2017, 12, e0180311.	2.5	30
58	The Role of Sirt1 in Epileptogenesis. ENeuro, 2017, 4, ENEURO.0301-16.2017.	1.9	26
59	A Semantic Cross-Species Derived Data Management Application. Data Science Journal, 2017, 16, 45.	1.3	1
60	MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after earlyâ€life adversity. Hippocampus, 2016, 26, 1618-1632.	1.9	88
61	Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses. Journal of Neuroscience, 2016, 36, 11295-11307.	3.6	45
62	Temporal Coordination of Hippocampal Neurons Reflects Cognitive Outcome Post-febrile Status Epilepticus. EBioMedicine, 2016, 7, 175-190.	6.1	30
63	Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a022384.	6.2	52
64	Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Reports, 2016, 14, 2402-2412.	6.4	88
65	Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology, 2016, 41, 197-206.	5.4	339
66	Rapid, Coordinate Inflammatory Responses after Experimental Febrile Status Epilepticus: Implications for Epileptogenesis. ENeuro, 2015, 2, ENEURO.0034-15.2015.	1.9	60
67	Shortâ€ŧerm modern lifeâ€ŀike stress exacerbates Aβâ€pathology and synapse loss in 3xTgâ€ <scp>AD</scp> mi Journal of Neurochemistry, 2015, 134, 915-926.	се _{. 3.9}	74
68	Synaptic rewiring of stress-sensitive neurons by early-life experience: A mechanism for resilience?. Neurobiology of Stress, 2015, 1, 109-115.	4.0	50
69	T2 relaxation time post febrile status epilepticus predicts cognitive outcome. Experimental Neurology, 2015, 269, 242-252.	4.1	24
70	Hyper-excitability and epilepsy generated by chronic early-life stress. Neurobiology of Stress, 2015, 2, 10-19.	4.0	66
71	Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons. Endocrinology, 2015, 156, 4769-4780.	2.8	84
72	Inflammatory Processes, Febrile Seizures, and Subsequent Epileptogenesis. Epilepsy Currents, 2014, 14, 15-22.	0.8	43

#	Article	IF	CITATIONS
73	Differential contribution of CBP:CREB binding to corticotropin-releasing hormone expression in the infant and adult hypothalamus. Stress, 2014, 17, 39-50.	1.8	6
74	Corticotropin releasing factor in neuroplasticity. Frontiers in Neuroendocrinology, 2014, 35, 171-179.	5.2	60
75	A Novel, Noninvasive, Predictive Epilepsy Biomarker with Clinical Potential. Journal of Neuroscience, 2014, 34, 8672-8684.	3.6	92
76	Naturalistic rodent models of chronic earlyâ€life stress. Developmental Psychobiology, 2014, 56, 1675-1688.	1.6	219
77	Origins of Temporal Lobe Epilepsy: Febrile Seizures and Febrile Status Epilepticus. Neurotherapeutics, 2014, 11, 242-250.	4.4	83
78	The transcription factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes. ELife, 2014, 3, e01267.	6.0	115
79	NMDA Receptor Activation and Calpain Contribute to Disruption of Dendritic Spines by the Stress Neuropeptide CRH. Journal of Neuroscience, 2013, 33, 16945-16960.	3.6	71
80	The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nature Neuroscience, 2013, 16, 552-561.	14.8	213
81	How Does a Neuron "know―to Modulate Its Epigenetic Machinery in Response to Early-Life Environment/Experience?. Frontiers in Psychiatry, 2013, 4, 89.	2.6	31
82	Novel HCN2 Mutation Contributes to Febrile Seizures by Shifting the Channel's Kinetics in a Temperature-Dependent Manner. PLoS ONE, 2013, 8, e80376.	2.5	49
83	Differential Dorso-ventral Distributions of Kv4.2 and HCN Proteins Confer Distinct Integrative Properties to Hippocampal CA1 Pyramidal Cell Distal Dendrites. Journal of Biological Chemistry, 2012, 287, 17656-17661.	3.4	43
84	Fragmentation and Unpredictability of Early-Life Experience in Mental Disorders. American Journal of Psychiatry, 2012, 169, 907-915.	7.2	202
85	Sculpting the hippocampus from within: stress, spines, and CRH. Trends in Neurosciences, 2012, 35, 315-324.	8.6	167
86	Tuning synaptic transmission in the hippocampus by stress: the CRH system. Frontiers in Cellular Neuroscience, 2012, 6, 13.	3.7	108
87	The Brain, Seizures and Epilepsy Throughout Life: Understanding a Moving Target. Epilepsy Currents, 2012, 12, 7-12.	0.8	23
88	Hyperpolarization-activated cation current Ih of dentate gyrus granule cells is upregulated in human and rat temporal lobe epilepsy. Biochemical and Biophysical Research Communications, 2012, 420, 156-160.	2.1	34
89	Dorsoventral Differences in Intrinsic Properties in Developing CA1 Pyramidal Cells. Journal of Neuroscience, 2012, 32, 3736-3747.	3.6	42
90	Distinct regional and subcellular localization of the actinâ€binding protein filamin a in the mature rat brain. Journal of Comparative Neurology, 2012, 520, 3013-3034.	1.6	10

#	Article	IF	CITATIONS
91	Finding a better drug for epilepsy: Antiinflammatory targets. Epilepsia, 2012, 53, 1113-1118.	5.1	44
92	Epileptogenesis after prolonged febrile seizures: Mechanisms, biomarkers and therapeutic opportunities. Neuroscience Letters, 2011, 497, 155-162.	2.1	56
93	Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiology of Learning and Memory, 2011, 96, 79-88.	1.9	100
94	The role of inflammation in epilepsy. Nature Reviews Neurology, 2011, 7, 31-40.	10.1	1,442
95	Does Acquired Epileptogenesis in the Immature Brain Require Neuronal Death?. Epilepsy Currents, 2011, 11, 21-26.	0.8	34
96	Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiology of Disease, 2011, 42, 300-310.	4.4	138
97	Towards an integrated view of HCN channel role in epilepsy. Current Opinion in Neurobiology, 2011, 21, 873-879.	4.2	95
98	Neuronâ€restrictive silencer factorâ€mediated hyperpolarizationâ€activated cyclic nucleotide gated channelopathy in experimental temporal lobe epilepsy. Annals of Neurology, 2011, 70, 454-465.	5.3	163
99	Treatment of Infantile Spasms. Journal of Child Neurology, 2011, 26, 1411-1421.	1.4	63
100	Forebrain CRF ₁ Modulates Early-Life Stress-Programmed Cognitive Deficits. Journal of Neuroscience, 2011, 31, 13625-13634.	3.6	154
101	Hippocampal Dysfunction and Cognitive Impairments Provoked by Chronic Early-Life Stress Involve Excessive Activation of CRH Receptors. Journal of Neuroscience, 2010, 30, 13005-13015.	3.6	348
102	Plasticity of the stress response early in life: Mechanisms and significance. Developmental Psychobiology, 2010, 52, 661-670.	1.6	66
103	Augmented currents of an <i>HCN2</i> variant in patients with febrile seizure syndromes. Annals of Neurology, 2010, 67, 542-546.	5.3	96
104	Infantile spasms: A U.S. consensus report. Epilepsia, 2010, 51, 2175-2189.	5.1	382
105	Fever, febrile seizures, and epileptogenesis. Epilepsia, 2010, 51, 33-33.	5.1	5
106	Trafficking and Surface Expression of Hyperpolarization-activated Cyclic Nucleotide-gated Channels in Hippocampal Neurons. Journal of Biological Chemistry, 2010, 285, 14724-14736.	3.4	61
107	Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone. Journal of Neuroscience, 2010, 30, 703-713.	3.6	150
108	Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13123-13128.	7.1	226

#	Article	IF	CITATIONS
109	Altered Function of the SCN1A Voltage-gated Sodium Channel Leads to γ-Aminobutyric Acid-ergic (GABAergic) Interneuron Abnormalities. Journal of Biological Chemistry, 2010, 285, 9823-9834.	3.4	200
110	Epileptogenesis Provoked by Prolonged Experimental Febrile Seizures: Mechanisms and Biomarkers. Journal of Neuroscience, 2010, 30, 7484-7494.	3.6	228
111	Early Life Programming and Neurodevelopmental Disorders. Biological Psychiatry, 2010, 68, 314-319.	1.3	791
112	The pathways from mother's love to baby's future. Frontiers in Behavioral Neuroscience, 2009, 3, 27.	2.0	81
113	Postnatal Expression Pattern of HCN Channel Isoforms in Thalamic Neurons: Relationship to Maturation of Thalamocortical Oscillations. Journal of Neuroscience, 2009, 29, 8847-8857.	3.6	79
114	Febrile seizures: Mechanisms and relationship to epilepsy. Brain and Development, 2009, 31, 366-371.	1.1	163
115	Cognitive dysfunction after experimental febrile seizures. Experimental Neurology, 2009, 215, 167-177.	4.1	103
116	The neuro-symphony of stress. Nature Reviews Neuroscience, 2009, 10, 459-466.	10.2	1,243
117	Activityâ€dependent heteromerization of the hyperpolarizationâ€activated, cyclicâ€nucleotide gated (HCN) channels: role of Nâ€linked glycosylation. Journal of Neurochemistry, 2008, 105, 68-77.	3.9	52
118	The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 2008, 583, 204-214.	3.5	96
119	Mechanisms of seizure-induced â€~transcriptional channelopathy' of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. Neurobiology of Disease, 2008, 29, 297-305.	4.4	82
120	A Novel Mouse Model for Acute and Long-Lasting Consequences of Early Life Stress. Endocrinology, 2008, 149, 4892-4900.	2.8	427
121	Rapid Loss of Dendritic Spines after Stress Involves Derangement of Spine Dynamics by Corticotropin-Releasing Hormone. Journal of Neuroscience, 2008, 28, 2903-2911.	3.6	224
122	Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Progress in Neurobiology, 2008, 86, 129-140.	5.7	68
123	Localization of HCN1 Channels to Presynaptic Compartments: Novel Plasticity That May Contribute to Hippocampal Maturation. Journal of Neuroscience, 2007, 27, 4697-4706.	3.6	65
124	Fever, febrile seizures and epilepsy. Trends in Neurosciences, 2007, 30, 490-496.	8.6	196
125	Models for infantile spasms: An arduous journey to the holy grail…. Annals of Neurology, 2007, 61, 89-91.	5.3	30
126	Epileptogenesis in the Developing Brain: What Can We Learn from Animal Models?. Epilepsia, 2007, 48, 2-6.	5.1	50

#	Article	IF	CITATIONS
127	New Roles for Interleukin-1 Beta in the Mechanisms of Epilepsy. Epilepsy Currents, 2007, 7, 45-50.	0.8	208
128	Go "West,―Young Man…The Quest for Animal Models of Infantile Spasms (West Syndrome). Epilepsy Currents, 2007, 7, 165-167.	0.8	3
129	Regulated expression of HCN channels and cAMP levels shape the properties of the h current in developing rat hippocampus. European Journal of Neuroscience, 2006, 24, 94-104.	2.6	75
130	Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. Journal of Physiology, 2006, 575, 83-100.	2.9	64
131	Hippocampal neuroplasticity induced by early-life stress: Functional and molecular aspects. Frontiers in Neuroendocrinology, 2006, 27, 180-192.	5.2	184
132	Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain, 2006, 129, 911-922.	7.6	345
133	Complex Febrile Seizures—An Experimental Model in Immature Rodents. , 2006, , 333-340.		9
134	Quantitative Analysis and Subcellular Distribution of mRNA and Protein Expression of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels throughout Development in Rat Hippocampus. Cerebral Cortex, 2006, 17, 702-712.	2.9	88
135	Neuroplasticity of the Hypothalamic-Pituitary-Adrenal Axis Early in Life Requires Recurrent Recruitment of Stress-Regulating Brain Regions. Journal of Neuroscience, 2006, 26, 2434-2442.	3.6	106
136	Endogenous Neuropeptide Y Prevents Recurrence of Experimental Febrile Seizures by Increasing Seizure Threshold. Journal of Molecular Neuroscience, 2005, 25, 275-284.	2.3	32
137	When a Rat Runs Cold and Hot $\hat{a} \in $ Epilepsy Currents, 2005, 5, 81-82.	0.8	Ο
138	Synchronized network activity in developing rat hippocampus involves regional hyperpolarizationâ€activated cyclic nucleotideâ€gated (HCN) channel function. European Journal of Neuroscience, 2005, 22, 2669-2674.	2.6	43
139	Hippocampal neurogenesis is not enhanced by lifelong reduction of glucocorticoid levels. Hippocampus, 2005, 15, 491-501.	1.9	29
140	Interleukin-1β contributes to the generation of experimental febrile seizures. Annals of Neurology, 2005, 57, 152-155.	5.3	379
141	Mechanisms of Late-Onset Cognitive Decline after Early-Life Stress. Journal of Neuroscience, 2005, 25, 9328-9338.	3.6	411
142	Enduring, Handling-Evoked Enhancement of Hippocampal Memory Function and Glucocorticoid Receptor Expression Involves Activation of the Corticotropin-Releasing Factor Type 1 Receptor. Endocrinology, 2005, 146, 4090-4096.	2.8	107
143	Formation of heteromeric hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the hippocampus is regulated by developmental seizures. Neurobiology of Disease, 2005, 19, 200-207.	4.4	113
144	Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15782-15787.	7.1	157

#	Article	IF	CITATIONS
145	Region-Specific Onset of Handling-Induced Changes in Corticotropin-Releasing Factor and Glucocorticoid Receptor Expression. Endocrinology, 2004, 145, 2702-2706.	2.8	61
146	Serial MRI after experimental febrile seizures: Altered T2 signal without neuronal death. Annals of Neurology, 2004, 56, 709-714.	5.3	89
147	Febrile Seizures and Mechanisms of Epileptogenesis: Insights from an Animal Model. Advances in Experimental Medicine and Biology, 2004, 548, 213-225.	1.6	69
148	Stress and the Developing Hippocampus: A Double-Edged Sword?. Molecular Neurobiology, 2003, 27, 121-136.	4.0	75
149	Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus, 2003, 13, 399-412.	1.9	160
150	Mitochondrial uncoupling proteinâ $\in 2$ protects the immature brain from excitotoxic neuronal death. Annals of Neurology, 2003, 53, 711-717.	5.3	219
151	Long-term neuroplasticity and functional consequences of single versus recurrent early-life seizures. Annals of Neurology, 2003, 54, 701-705.	5.3	39
152	Treatment of Infantile Spasms: The Ideal and the Mundane. Epilepsia, 2003, 44, 993-994.	5.1	10
153	The multiple personalities of h-channels. Trends in Neurosciences, 2003, 26, 550-554.	8.6	114
154	Enhanced Expression of a Specific Hyperpolarization-Activated Cyclic Nucleotide-Gated Cation Channel (HCN) in Surviving Dentate Gyrus Granule Cells of Human and Experimental Epileptic Hippocampus. Journal of Neuroscience, 2003, 23, 6826-6836.	3.6	179
155	Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13908-13913.	7.1	240
156	Is neuronal death required for seizure-induced epileptogenesis in the immature brain?. Progress in Brain Research, 2002, 135, 365-375.	1.4	45
157	The mystery of the Doctor's son, or the riddle of West syndrome. Neurology, 2002, 58, 953-955.	1.1	20
158	Corticotropin-Releasing Hormone (CRH) Downregulates the Function of Its Receptor (CRF1) and Induces CRF1 Expression in Hippocampal and Cortical Regions of the Immature Rat Brain. Experimental Neurology, 2002, 176, 75-86.	4.1	71
159	Stressed-out, or in (utero)?. Trends in Neurosciences, 2002, 25, 518-524.	8.6	364
160	Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner. Journal of Neuroscience, 2002, 22, 4591-4599.	3.6	252
161	What are the reasons for the strikingly different approaches to the use of ACTH in infants with West syndrome?. Brain and Development, 2001, 23, 647-648.	1.1	9
162	How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain and Development, 2001, 23, 533-538.	1.1	85

#	Article	IF	CITATIONS
163	Rapid phosphorylation of the CRE binding protein precedes stress-induced activation of the corticotropin releasing hormone gene in medial parvocellular hypothalamic neurons of the immature rat. Molecular Brain Research, 2001, 96, 39-49.	2.3	29
164	Novel and Transient Populations of Corticotropin-Releasing Hormone-Expressing Neurons in Developing Hippocampus Suggest Unique Functional Roles: A Quantitative Spatiotemporal Analysis. Journal of Neuroscience, 2001, 21, 7171-7181.	3.6	133
165	Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Annals of Neurology, 2001, 49, 304-312.	5.3	123
166	Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Medicine, 2001, 7, 331-337.	30.7	395
167	Down-Regulation of Hypothalamic Corticotropin-Releasing Hormone Messenger Ribonucleic Acid (mRNA) Precedes Early-Life Experience-Induced Changes in Hippocampal Glucocorticoid Receptor mRNA**This work was supported by NIH Grants NS-28912 and NS-39307 Endocrinology, 2001, 142, 89-97.	2.8	128
168	Corticotropin (ACTH) acts directly on amygdala neurons to downâ€regulate corticotropinâ€releasing hormone gene expression. Annals of Neurology, 2001, 49, 304-312.	5.3	5
169	Down-Regulation of Hypothalamic Corticotropin-Releasing Hormone Messenger Ribonucleic Acid (mRNA) Precedes Early-Life Experience-Induced Changes in Hippocampal Glucocorticoid Receptor mRNA. Endocrinology, 2001, 142, 89-97.	2.8	35
170	Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF1)-like immunoreactivity in the mouse brain: Light microscopy analysis using an antibody directed against the C-terminus. Journal of Comparative Neurology, 2000, 420, 305-323.	1.6	195
171	Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Annals of Neurology, 2000, 47, 336-344.	5.3	336
172	Developmental seizures induced by common early-life insults: Short- and long-term effects on seizure susceptibility. Mental Retardation and Developmental Disabilities Research Reviews, 2000, 6, 253-257.	3.6	63
173	Activation of Specific Neuronal Circuits by Corticotropin Releasing Hormone as Indicated by c-fos Expression and Glucose Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1414-1424.	4.3	25
174	Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Annals of Neurology, 2000, 47, 336-344.	5.3	18
175	Differential Regulation of the Expression of Corticotropin-Releasing Factor Receptor Type 2 (CRF2) in Hypothalamus and Amygdala of the Immature Rat by Sensory Input and Food Intake. Journal of Neuroscience, 1999, 19, 3982-3991.	3.6	105
176	Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature Medicine, 1999, 5, 888-894.	30.7	286
177	Effects of Blocking GABA Degradation on Corticotropin-Releasing Hormone Gene Expression in Selected Brain Regions. Epilepsia, 1999, 40, 1190-1197.	5.1	18
178	Differential regulation of glucocorticoid receptor messenger RNA (GR-mRNA) by maternal deprivation in immature rat hypothalamus and limbic regions. Developmental Brain Research, 1999, 114, 265-268.	1.7	59
179	Infantile Spasms: Hypothesis-Driven Therapy and Pilot Human Infant Experiments Using Corticotropin-Releasing Hormone Receptor Antagonists. Developmental Neuroscience, 1999, 21, 281-289.	2.0	34
180	Spatial and temporal evolution of neuronal activation, stress and injury in lithium–pilocarpine seizures in adult rats. Brain Research, 1998, 793, 61-72.	2.2	80

#	Article	IF	CITATIONS
181	The in vivo proconvulsant effects of corticotropin releasing hormone in the developing rat are independent of ionotropic glutamate receptor activation. Developmental Brain Research, 1998, 111, 119-128.	1.7	26
182	Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: Light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus, 1998, 8, 231-243.	1.9	97
183	Co-localization of corticotropin-releasing hormone with glutamate decarboxylase and calcium-binding proteins in infant rat neocortical interneurons. Experimental Brain Research, 1998, 123, 334-340.	1.5	38
184	Corticotropin Releasing Factor mRNA Expression in the Hypothalamic Paraventricular Nucleus and the Central Nucleus of the Amygdala is Modulated by Repeated Acute Stress in the Immature Rat. Journal of Neuroendocrinology, 1998, 10, 663-669.	2.6	126
185	Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends in Neurosciences, 1998, 21, 471-476.	8.6	209
186	Corticotropin Releasing Hormone Antagonist Does Not Prevent Adrenalectomy-Induced Apoptosis in the Dentate Gyrus of the Rat Hippocampus. Stress, 1998, 2, 159-169.	1.8	9
187	Seizure-Induced Neuronal Injury: Vulnerability to Febrile Seizures in an Immature Rat Model. Journal of Neuroscience, 1998, 18, 4285-4294.	3.6	294
188	Corticotropin Releasing Factor Receptor Type II (CRF2) Messenger Ribonucleic Acid Levels in the Hypothalamic Ventromedial Nucleus of the Infant Rat Are Reduced by Maternal Deprivation. Endocrinology, 1997, 138, 5048-5051.	2.8	54
189	Stress-Induced Transcriptional Regulation in the Developing Rat Brain Involves Increased Cyclic Adenosine 3′,5′-Monophosphate-Regulatory Element Binding Activity. Molecular Endocrinology, 1997, 11, 2016-2024.	3.7	28
190	Developmental Neurobiology of the Stress Response: Multilevel Regulation of Corticotropin-Releasing Hormone Function. Annals of the New York Academy of Sciences, 1997, 814, 252-265.	3.8	35
191	The CRF1 receptor mediates the excitatory actions of corticotropin releasing factor (CRF) in the developing rat brain: in vivo evidence using a novel, selective, non-peptide CRF receptor antagonist. Brain Research, 1997, 770, 89-95.	2.2	113
192	Febrile seizures: an appropriate-aged model suitable for long-term studies. Developmental Brain Research, 1997, 98, 265-270.	1.7	228
193	Abnormal corticosterone regulation in an immature rat model of continuous chronic stress. Pediatric Neurology, 1996, 15, 114-119.	2.1	175
194	Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system. Developmental Brain Research, 1996, 91, 159-163.	1.7	112
195	Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Developmental Brain Research, 1996, 91, 245-251.	1.7	62
196	High-dose Corticotropin (ACTH) Versus Prednisone for Infantile Spasms: A Prospective, Randomized, Blinded Study. Pediatrics, 1996, 97, 375-379.	2.1	289
197	Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. NeuroReport, 1995, 6, 277-280.	1.2	84
198	ACTH Does Not Control Neonatal Seizures Induced by Administration of Exogenous Corticotropin-Releasing Hormone. Epilepsia, 1995, 36, 174-178.	5.1	61

#	Article	IF	CITATIONS
199	Effects of maternal and sibling deprivation on basal and stress induced hypothalamic-pituitary-adrenal components in the infant rat. Neuroscience Letters, 1995, 192, 49-52.	2.1	85
200	Cerebrospinal fluid corticotropin and cortisol are reduced in infantile spasms. Pediatric Neurology, 1995, 13, 108-110.	2.1	31
201	Subacute sclerosing panencephalitis in an infant: Diagnostic role of viral genome analysis. Annals of Neurology, 1994, 36, 103-108.	5.3	41
202	Status epilepticus results in reversible neuronal injury in infant rat hippocampus: novel use of a marker. Developmental Brain Research, 1994, 77, 133-136.	1.7	52
203	Glucocorticoid Receptor mRNA Ontogeny in the Fetal and Postnatal Rat Forebrain. Molecular and Cellular Neurosciences, 1994, 5, 385-393.	2.2	63
204	Methods for implanting steroid-containing cannulae into the paraventricular nucleus of neonatal rats. Journal of Pharmacological and Toxicological Methods, 1993, 30, 97-102.	0.7	6
205	Short-interval amygdala kindling in neonatal rats. Developmental Brain Research, 1993, 73, 79-83.	1.7	32
206	Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neonatal rat. Developmental Brain Research, 1993, 73, 253-259.	1.7	63
207	CRH gene expression in the fetal rat is not increased after pharmacological adrenalectomy. Neuroscience Letters, 1992, 142, 215-218.	2.1	28
208	Corticotropinâ€releasing hormone–induced seizures in infant rats originate in the amygdala. Annals of Neurology, 1992, 31, 488-494.	5.3	133
209	Ontogeny of corticotropin releasing hormone gene expression in rat hypothalamus — comparison with somatostatin. International Journal of Developmental Neuroscience, 1991, 9, 473-478.	1.6	67
210	Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Developmental Brain Research, 1991, 61, 97-101.	1.7	174
211	Fetal and maternal levels of corticosterone and ACTH after pharmacological adrenalectomy. Life Sciences, 1990, 47, 485-489.	4.3	29
212	Blocking NRSF Function Rescues Spatial Memory Impaired by Early-Life Adversity and Reveals Unexpected Underlying Transcriptional Programs. SSRN Electronic Journal, 0, , .	0.4	4