Earl T Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7550214/publications.pdf

Version: 2024-02-01

all docs

47 3,439 11 20 g-index

47 47 47 47 1615

times ranked

docs citations

citing authors

#	Article	IF	CITATIONS
1	The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software Engineering, 2015, 41, 507-525.	5.6	608
2	A Survey of Machine Learning for Big Code and Naturalness. ACM Computing Surveys, 2019, 51, 1-37.	23.0	383
3	On the naturalness of software. , 2012, , .		345
4	Learning natural coding conventions. , 2014, , .		250
5	Suggesting accurate method and class names. , 2015, , .		247
6	The promises and perils of mining git., 2009,,.		220
7	Is the cure worse than the disease? overfitting in automated program repair. , 2015, , .		203
8	On the naturalness of software. Communications of the ACM, 2016, 59, 122-131.	4.5	158
9	The plastic surgery hypothesis. , 2014, , .		136
10	Deep learning type inference. , 2018, , .		100
11	Automated software transplantation. , 2015, , .		90
12	Comparing static bug finders and statistical prediction. , 2014, , .		76
13	Uncertainty, risk, and information value in software requirements and architecture. , 2014, , .		76
14	Automatic detection of floating-point exceptions. , 2013, , .		72
15	Has the bug really been fixed?. , 2010, , .		63
16	To Type or Not to Type: Quantifying Detectable Bugs in JavaScript. , 2017, , .		50
17	Cohesive and Isolated Development with Branches. Lecture Notes in Computer Science, 2012, , 316-331.	1.3	48
18	Today Was a Good Day: The Daily Life of Software Developers. IEEE Transactions on Software Engineering, 2021, 47, 863-880.	5.6	39

#	Article	IF	CITATIONS
19	The arms race: Adversarial search defeats entropy used to detect malware. Expert Systems With Applications, 2019, 118, 246-260.	7.6	27
20	Automatic detection of floating-point exceptions. ACM SIGPLAN Notices, 2013, 48, 549-560.	0.2	19
21	Time-travel debugging for JavaScript/Node.js. , 2016, , .		19
22	Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software Engineering, 2019, 45, 1150-1169.	5.6	19
23	RefiNym: using names to refine types. , 2018, , .		17
24	Automated Transplantation of Call Graph and Layout Features into Kate. Lecture Notes in Computer Science, 2015, , 262-268.	1.3	17
25	Tardis. , 2014, , .		16
26	Reusing debugging knowledge via trace-based bug search. , 2012, , .		14
27	Darwinian data structure selection. , 2018, , .		14
28	Mining Semantic Loop Idioms. IEEE Transactions on Software Engineering, 2018, 44, 651-668.	5.6	14
29	Game-theoretic analysis of development practices: Challenges and opportunities. Journal of Systems and Software, 2020, 159, 110424.	4.5	13
30	Getting Ahead of the Arms Race: Hothousing the Coevolution of VirusTotal with a Packer. Entropy, 2021, 23, 395.	2.2	11
31	Understanding the syntactic rule usage in java. Journal of Systems and Software, 2017, 123, 160-172.	4.5	10
32	The Assessor's Dilemma: Improving Bug Repair via Empirical Game Theory. IEEE Transactions on Software Engineering, 2021, 47, 2143-2161.	5.6	7
33	Tardis. ACM SIGPLAN Notices, 2014, 49, 67-82.	0.2	7
34	Liberating the programmer with prorogued programming. , 2012, , .		6
35	Capturing and Exploiting IDE Interactions. , 2014, , .		6
36	Detecting Malware with Information Complexity. Entropy, 2020, 22, 575.	2.2	6

#	Article	IF	CITATIONS
37	Optimising Darwinian Data Structures on Google Guava. Lecture Notes in Computer Science, 2017, , 161-167.	1.3	6
38	POSIT., 2020,,.		5
39	Collecting a heap of shapes. , 2013, , .		4
40	Casper: Automatic tracking of null dereferences to inception with causality traces. Journal of Systems and Software, 2016, 122, 52-62.	4.5	4
41	Artefact Relation Graphs for Unit Test Reuse Recommendation. , 2021, , .		4
42	BQL., 2011,,.		3
43	What effect does Distributed Version Control have on OSS project organization?., 2013,,.		3
44	Trident: Controlling Side Effects in Automated Program Repair. IEEE Transactions on Software Engineering, 2021, , 1-1.	5.6	2
45	Reusing debugging knowledge via trace-based bug search. ACM SIGPLAN Notices, 2012, 47, 927-942.	0.2	1
46	Making data-driven porting decisions with Tuscan. , 2018, , .		1
47	Aide-mémoire: Improving a Project's Collective Memory via Pull Request–Issue Links. ACM Transactions on Software Engineering and Methodology, 2023, 32, 1-36.	6.0	O