
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549941/publications.pdf Version: 2024-02-01

Δρανική Ι Ινέρ

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	27.8	21,074
2	Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1. Science, 2009, 324, 930-935.	12.6	4,989
3	De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature, 2004, 430, 694-699.	27.8	1,691
4	AAA ⁺ : A Class of Chaperone-Like ATPases Associated with the Assembly, Operation, and Disassembly of Protein Complexes. Genome Research, 1999, 9, 27-43.	5.5	1,549
5	Genome Sequence of an Obligate Intracellular Pathogen of Humans: <i>Chlamydia trachomatis</i> . Science, 1998, 282, 754-759.	12.6	1,449
6	AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research, 1999, 9, 27-43.	5.5	1,388
7	Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science, 2000, 289, 1902-1906.	12.6	1,357
8	Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Research, 2001, 29, 2994-3005.	14.5	1,226
9	Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature, 2010, 468, 839-843.	27.8	1,160
10	Horizontal Gene Transfer in Prokaryotes: Quantification and Classification. Annual Review of Microbiology, 2001, 55, 709-742.	7.3	1,024
11	Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology, 2002, 317, 41-72.	4.2	1,021
12	Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome. Science, 2002, 298, 611-615.	12.6	919
13	Genome Sequence of the Radioresistant Bacterium <i>Deinococcus radiodurans</i> R1. Science, 1999, 286, 1571-1577.	12.6	879
14	Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum. Science, 2004, 304, 441-445.	12.6	877
15	TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Reviews Molecular Cell Biology, 2013, 14, 341-356.	37.0	733
16	Evolutionary history and higher order classification of AAA+ ATPases. Journal of Structural Biology, 2004, 146, 11-31.	2.8	711
17	Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 2004, 14, 283-291.	5.7	683
18	Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 2002, 298, 608-611.	12.6	666

#	Article	IF	CITATIONS
19	Genome of the Extremely Radiation-Resistant Bacterium <i>Deinococcus radiodurans</i> Viewed from the Perspective of Comparative Genomics. Microbiology and Molecular Biology Reviews, 2001, 65, 44-79.	6.6	619
20	DNA Methylation on N6-Adenine in C.Âelegans. Cell, 2015, 161, 868-878.	28.9	602
21	Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Research, 2006, 117, 156-184.	2.2	541
22	The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends in Biochemical Sciences, 1997, 22, 458-459.	7.5	534
23	Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Research, 1999, 27, 1223-1242.	14.5	501
24	Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses. Journal of Virology, 2001, 75, 11720-11734.	3.4	495
25	The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiology Reviews, 2005, 29, 231-262.	8.6	469
26	Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Research, 2002, 30, 1427-1464.	14.5	462
27	SAP – a putative DNA-binding motif involved in chromosomal organization. Trends in Biochemical Sciences, 2000, 25, 112-114.	7.5	454
28	Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biology Direct, 2012, 7, 18.	4.6	440
29	The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biology, 2001, 2, research0007.1.	9.6	437
30	The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends in Biochemical Sciences, 1998, 23, 469-472.	7.5	432
31	Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Research, 2005, 33, 3994-4006.	14.5	426
32	Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. Journal of Molecular Biology, 1999, 287, 1023-1040.	4.2	421
33	Chromosome 2 Sequence of the Human Malaria Parasite Plasmodium falciparum. , 1998, 282, 1126-1132.		419
34	The Role of Lineage-Specific Gene Family Expansion in the Evolution of Eukaryotes. Genome Research, 2002, 12, 1048-1059.	5.5	416
35	AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Research, 1998, 26, 4413-4421.	14.5	413
36	STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer. Journal of Molecular Biology, 2004, 343, 1-28.	4.2	407

#	Article	IF	CITATIONS
37	Comparison of the Complete Protein Sets of Worm and Yeast: Orthology and Divergence. , 1998, 282, 2022-2028.		404
38	The domains of death: evolution of the apoptosis machinery. Trends in Biochemical Sciences, 1999, 24, 47-53.	7.5	393
39	Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death and Differentiation, 2002, 9, 394-404.	11.2	380
40	Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6, 38.	4.6	379
41	Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes. Journal of Molecular Biology, 2006, 361, 1003-1034.	4.2	376
42	START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. Trends in Biochemical Sciences, 1999, 24, 130-132.	7.5	364
43	The U box is a modified RING finger — a common domain in ubiquitination. Current Biology, 2000, 10, R132-R134.	3.9	363
44	The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiology Letters, 1999, 176, 111-116.	1.8	352
45	Evolution of Aminoacyl-tRNA Synthetases—Analysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events. Genome Research, 1999, 9, 689-710.	5.5	346
46	Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle, 2009, 8, 1698-1710.	2.6	345
47	Toprima conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Research, 1998, 26, 4205-4213.	14.5	338
48	Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends in Genetics, 1998, 14, 442-444.	6.7	337
49	The many faces of the helix-turn-helix domain: Transcription regulation and beyond. FEMS Microbiology Reviews, 2005, 29, 231-262.	8.6	334
50	A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002, 30, 482-496.	14.5	331
51	Genome of <i>Rhodnius prolixus</i> , an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14936-14941.	7.1	329
52	Evolution of aminoacyl-tRNA synthetasesanalysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Research, 1999, 9, 689-710.	5.5	329
53	Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497, 122-126.	27.8	323
54	PAS: a multifunctional domain family comes to light. Current Biology, 1997, 7, R674-R677.	3.9	319

#	Article	IF	CITATIONS
55	Eukaryotic Signalling Domain Homologues in Archaea and Bacteria. Ancient Ancestry and Horizontal Gene Transfer. Journal of Molecular Biology, 1999, 289, 729-745.	4.2	318
56	Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environmental Microbiology, 2000, 2, 516-529.	3.8	313
57	Did DNA replication evolve twice independently?. Nucleic Acids Research, 1999, 27, 3389-3401.	14.5	312
58	Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biology, 2003, 4, R11.	9.6	312
59	Apoptotic Molecular Machinery: Vastly Increased Complexity in Vertebrates Revealed by Genome Comparisons. Science, 2001, 291, 1279-1284.	12.6	309
60	Plasmodium Biology. Cell, 2003, 115, 771-785.	28.9	291
61	Novel Families of Putative Protein Kinases in Bacteria and Archaea: Evolution of the "Eukaryotic― Protein Kinase Superfamily. Genome Research, 1998, 8, 1038-1047.	5.5	290
62	IMPALA: matching a protein sequence against a collection of PSI-BLAST-constructed position-specific score matrices. Bioinformatics, 1999, 15, 1000-1011.	4.1	288
63	Ufd2, a Novel Autoantigen in Scleroderma, Regulates Sister Chromatid Separation. Cell Cycle, 2004, 3, 1612-1618.	2.6	287
64	The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends in Biochemical Sciences, 2000, 25, 223-224.	7.5	286
65	DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Research, 1999, 27, 1609-1618.	14.5	285
66	Diversification and spectral tuning in marine proteorhodopsins. EMBO Journal, 2003, 22, 1725-1731.	7.8	284
67	Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Research, 2004, 32, 5260-5279.	14.5	284
68	The complete genome of hyperthermophile <i>Methanopyrus kandleri AV19</i> and monophyly of archaeal methanogens. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4644-4649.	7.1	283
69	SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Research, 2000, 28, 3417-3432.	14.5	279
70	The Impact of Comparative Genomics on Our Understanding of Evolution. Cell, 2000, 101, 573-576.	28.9	273
71	Evolution and Classification of P-loop Kinases and Related Proteins. Journal of Molecular Biology, 2003, 333, 781-815.	4.2	271
72	Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11319-11324.	7.1	268

#	Article	IF	CITATIONS
73	The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends in Biochemical Sciences, 1998, 23, 127-129.	7.5	263
74	Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nature Immunology, 2007, 8, 647-656.	14.5	263
75	A Database of Bacterial Lipoproteins (DOLOP) with Functional Assignments to Predicted Lipoproteins. Journal of Bacteriology, 2006, 188, 2761-2773.	2.2	255
76	Comparative Genomics, Evolution and Origins of the Nuclear Envelope and Nuclear Pore Complex. Cell Cycle, 2004, 3, 1625-1650.	2.6	254
77	Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. Journal of Molecular Biology, 2006, 358, 614-633.	4.2	254
78	A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends in Biochemical Sciences, 2000, 25, 50-52.	7.5	249
79	Prokaryotic Homologs of the Eukaryotic DNA-End-Binding Protein Ku, Novel Domains in the Ku Protein and Prediction of a Prokaryotic Double-Strand Break Repair System. Genome Research, 2001, 11, 1365-1374.	5.5	246
80	Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Research, 2005, 33, 3875-3896.	14.5	246
81	Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains11Edited by F. Cohen. Journal of Molecular Biology, 2001, 307, 1271-1292.	4.2	243
82	Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Research, 1998, 26, 3746-3752.	14.5	242
83	The STAS domain — a link between anion transporters and antisigma-factor antagonists. Current Biology, 2000, 10, R53-R55.	3.9	239
84	Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Molecular Microbiology, 2003, 49, 977-989.	2.5	237
85	Interplay between gene expression noise and regulatory network architecture. Trends in Genetics, 2012, 28, 221-232.	6.7	235
86	An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Molecular Microbiology, 2007, 64, 738-754.	2.5	234
87	Malaria Parasite clag3 Genes Determine Channel-Mediated Nutrient Uptake by Infected Red Blood Cells. Cell, 2011, 145, 665-677.	28.9	228
88	Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. International Journal for Parasitology, 2008, 38, 1-31.	3.1	226
89	Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biology Direct, 2013, 8, 15.	4.6	221
90	Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease. Frontiers in Genetics, 2012, 3, 283.	2.3	220

#	Article	lF	CITATIONS
91	Prediction of the Archaeal Exosome and Its Connections with the Proteasome and the Translation and Transcription Machineries by a Comparative-Genomic Approach. Genome Research, 2001, 11, 240-252.	5.5	219
92	PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature, 2013, 499, 223-227.	27.8	219
93	Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. Genome Research, 1999, 9, 608-628.	5.5	219
94	DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Research, 1999, 27, 4658-4670.	14.5	218
95	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins: Structure, Function and Bioinformatics, 2001, 43, 134-144.	2.6	218
96	Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Structural Biology, 2003, 3, 1.	2.3	218
97	Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biology, 2004, 6, R4.	9.6	218
98	New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biology, 2003, 4, R81.	9.6	213
99	Comprehensive Analysis of Combinatorial Regulation using the Transcriptional Regulatory Network of Yeast. Journal of Molecular Biology, 2006, 360, 213-227.	4.2	207
100	Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Research, 1999, 9, 608-28.	5.5	202
101	Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11922-11927.	7.1	200
102	Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Research, 2015, 43, 10633-10654.	14.5	200
103	The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends in Biochemical Sciences, 2001, 26, 273-275.	7.5	194
104	Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role?. Trends in Genetics, 2004, 20, 292-299.	6.7	189
105	Natural History of Eukaryotic DNA Methylation Systems. Progress in Molecular Biology and Translational Science, 2011, 101, 25-104.	1.7	187
106	The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends in Biochemical Sciences, 1998, 23, 284-286.	7.5	186
107	A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Research, 2011, 39, 4532-4552.	14.5	184
108	Identification of the m6Am Methyltransferase PCIF1 Reveals the Location and Functions of m6Am in the Transcriptome. Molecular Cell, 2019, 75, 631-643.e8.	9.7	183

#	Article	IF	CITATIONS
109	Classification of the caspase-hemoglobinase fold: Detection of new families and implications for the origin of the eukaryotic separins. Proteins: Structure, Function and Bioinformatics, 2002, 46, 355-367.	2.6	178
110	Comparative Analysis of Apicomplexa and Genomic Diversity in Eukaryotes. Genome Research, 2004, 14, 1686-1695.	5.5	172
111	Novel Predicted RNA-Binding Domains Associated with the Translation Machinery. Journal of Molecular Evolution, 1999, 48, 291-302.	1.8	170
112	The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Research, 2000, 10, 5-16.	5.5	167
113	Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends in Biochemical Sciences, 2000, 25, 535-537.	7.5	166
114	Guilt by Association: Contextual Information in Genome Analysis. Genome Research, 2000, 10, 1074-1077.	5.5	164
115	Comparative Genomic Analysis of Archaeal Genotypic Variants in a Single Population and in Two Different Oceanic Provinces. Applied and Environmental Microbiology, 2002, 68, 335-345.	3.1	164
116	CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Frontiers in Genetics, 2014, 5, 102.	2.3	164
117	A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Science, 1999, 8, 1714-1719.	7.6	161
118	Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics, 2003, 4, 5.	2.8	160
119	G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends in Biochemical Sciences, 1999, 24, 342-344.	7.5	159
120	Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain 1 1Edited by F. Cohen. Journal of Molecular Biology, 1999, 285, 1353-1361.	4.2	158
121	Classification and evolutionary history of the single-strand annealing proteins, RecT, Redβ, ERF and RAD52. BMC Genomics, 2002, 3, 8.	2.8	158
122	The natural history of the WRKY–GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Research, 2006, 34, 6505-6520.	14.5	157
123	Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Research, 2011, 39, 9473-9497.	14.5	154
124	The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors. Trends in Biochemical Sciences, 2001, 26, 579-582.	7.5	150
125	A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial recJ exonuclease. Trends in Biochemical Sciences, 1998, 23, 17-19.	7.5	149
126	The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biology, 2006, 7, R60.	9.6	148

#	Article	IF	CITATIONS
127	Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Current Opinion in Chemical Biology, 2003, 7, 12-20.	6.1	147
128	A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. Journal of Experimental Medicine, 2013, 210, 1265-1281.	8.5	147
129	Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Molecular Systems Biology, 2009, 5, 294.	7.2	146
130	An evolutionary classification of the metallo-beta-lactamase fold proteins. In Silico Biology, 1999, 1, 69-91.	0.9	145
131	The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends in Biochemical Sciences, 2000, 25, 421-423.	7.5	142
132	Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA world. Proteins: Structure, Function and Bioinformatics, 2002, 48, 1-14.	2.6	142
133	A conserved NAD ⁺ binding pocket that regulates protein-protein interactions during aging. Science, 2017, 355, 1312-1317.	12.6	140
134	Trends in protein evolution inferred from sequence and structure analysis. Current Opinion in Structural Biology, 2002, 12, 392-399.	5.7	139
135	The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biology, 2003, 4, R64.	9.6	138
136	Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: A HEAT-repeat-containing metalloenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 51-56.	7.1	135
137	Detection of novel members, structure-function analysis and evolutionary classification of the 2H phosphoesterase superfamily. Nucleic Acids Research, 2002, 30, 5229-5243.	14.5	133
138	Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell, 2004, 5, 137-149.	16.8	132
139	Molecular Factors and Biochemical Pathways Induced by Febrile Temperature in Intraerythrocytic Plasmodium falciparum Parasites. Infection and Immunity, 2007, 75, 2012-2025.	2.2	132
140	Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. BioEssays, 2016, 38, 27-40.	2.5	132
141	Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biology Direct, 2007, 2, 18.	4.6	127
142	The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biology, 2000, 1, research0007.1.	9.6	126
143	Rickettsiae and Chlamydiae: evidence of horizontal gene transfer and gene exchange. Trends in Genetics, 1999, 15, 173-175.	6.7	124
144	The NYN Domains: Novel Predicted RNAses with a PIN Domain-Like Fold. RNA Biology, 2006, 3, 18-27.	3.1	124

#	Article	IF	CITATIONS
145	Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene, 2010, 469, 18-30.	2.2	124
146	Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Science, 1998, 7, 1250-1254.	7.6	123
147	Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature, 2018, 557, 446-451.	27.8	122
148	The Ubiquitous yybP-ykoY Riboswitch Is a Manganese-Responsive Regulatory Element. Molecular Cell, 2015, 57, 1099-1109.	9.7	120
149	The mechanism of force transmission at bacterial focal adhesion complexes. Nature, 2016, 539, 530-535.	27.8	120
150	Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biology Direct, 2012, 7, 40.	4.6	119
151	A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito. Journal of Experimental Medicine, 2004, 199, 1533-1544.	8.5	118
152	The signaling helix: a common functional theme in diverse signaling proteins. Biology Direct, 2006, 1, 25.	4.6	117
153	Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Research, 2013, 41, 7635-7655.	14.5	115
154	Chitinases of the Avian Malaria Parasite Plasmodium gallinaceum, a Class of Enzymes Necessary for Parasite Invasion of the Mosquito Midgut. Journal of Biological Chemistry, 2000, 275, 10331-10341.	3.4	110
155	MORC2 Signaling Integrates Phosphorylation-Dependent, ATPase-Coupled Chromatin Remodeling during the DNA Damage Response. Cell Reports, 2012, 2, 1657-1669.	6.4	110
156	<i>Saccharomyces cerevisiae SMT4</i> Encodes an Evolutionarily Conserved Protease With a Role in Chromosome Condensation Regulation. Genetics, 2001, 158, 95-107.	2.9	109
157	Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nature Immunology, 2009, 10, 831-839.	14.5	108
158	The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biology, 2002, 3, research0023.1.	9.6	106
159	Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biology, 2002, 3, RESEARCH0012.	9.6	105
160	<i>O-</i> GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13732-13737.	7.1	105
161	MutL homologs in restriction-modification systems and the origin of eukaryotic MORC ATPases. Biology Direct, 2008, 3, 8.	4.6	102
162	Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium tuberculosis against Nitric Oxide. Molecular Cell, 2015, 57, 984-994.	9.7	101

#	Article	IF	CITATIONS
163	Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nature Structural and Molecular Biology, 2009, 16, 725-730.	8.2	100
164	The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System. Current Topics in Microbiology and Immunology, 2014, 384, 3-32.	1.1	99
165	Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene, 2004, 335, 73-88.	2.2	98
166	Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs). Genome Biology, 2000, 1, research0009.1.	9.6	96
167	A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Research, 2004, 32, 1439-1447.	14.5	96
168	Novel Predicted Peptidases with a Potential Role in the Ubiquitin Signaling Pathway. Cell Cycle, 2004, 3, 1440-1450.	2.6	95
169	Comparative Genomics and Evolutionary Trajectories of Viral ATP Dependent DNA-Packaging Systems. , 2007, 3, 48-65.		95
170	Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Molecular BioSystems, 2009, 5, 1636.	2.9	95
171	CRISPR Screens Uncover Genes that Regulate Target Cell Sensitivity to the Morphogen Sonic Hedgehog. Developmental Cell, 2018, 44, 113-129.e8.	7.0	95
172	Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biology Direct, 2008, 3, 45.	4.6	93
173	Anatomy of the E2 ligase fold: Implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Journal of Structural Biology, 2008, 162, 205-218.	2.8	93
174	Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms. Bioinformatics, 2012, 28, 2407-2411.	4.1	93
175	Bacterial-type DNA Holliday junction resolvases in eukaryotic viruses. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8926-8931.	7.1	92
176	The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biology, 2002, 3, research0039.1.	9.6	89
177	Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Molecular BioSystems, 2012, 8, 3142.	2.9	88
178	Eukaryote-specific Domains in Translation Initiation Factors: Implications for Translation Regulation and Evolution of the Translation System. Genome Research, 2000, 10, 1172-1184.	5.5	87
179	The HIRAN Domain and Recruitment of Chromatin Remodeling and Repair activities to Damaged DNA. Cell Cycle, 2006, 5, 775-782.	2.6	87
180	Natural history of the E1â€like superfamily: Implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins: Structure, Function and Bioinformatics, 2009, 75, 895-910.	2.6	86

#	Article	IF	CITATIONS
181	Protein fold recognition using sequence profiles and its application in structural genomics. Advances in Protein Chemistry, 2000, 54, 245-275.	4.4	85
182	Scores of RINGS but No PHDs in Ubiquitin Signaling. Cell Cycle, 2003, 2, 123-126.	2.6	85
183	Comparative genomics and structural biology of the molecular innovations of eukaryotes. Current Opinion in Structural Biology, 2006, 16, 409-419.	5.7	84
184	Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics, 2003, 4, 34.	2.8	83
185	BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics, 2008, 24, 458-461.	4.1	83
186	The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates. BMC Genomics, 2002, 3, 33.	2.8	81
187	The HARE-HTH and associated domains. Cell Cycle, 2012, 11, 119-131.	2.6	81
188	Novel Immunoglobulin Domain Proteins Provide Insights into Evolution and Pathogenesis of SARS-CoV-2-Related Viruses. MBio, 2020, 11, .	4.1	81
189	THUMP – a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. Trends in Biochemical Sciences, 2001, 26, 215-217.	7.5	80
190	Dynein light chains of the Roadblock/LC7 group belong to an ancient protein superfamily implicated in NTPase regulation. Current Biology, 2000, 10, R774-R776.	3.9	77
191	Novel eukaryotic enzymes modifying cell-surface biopolymers. Biology Direct, 2010, 5, 1.	4.6	77
192	EFCAB7 and IQCE Regulate Hedgehog Signaling by Tethering the EVC-EVC2 Complex to the Base of Primary Cilia. Developmental Cell, 2014, 28, 483-496.	7.0	76
193	A specialized version of the HD hydrolase domain implicated in signal transduction. Journal of Molecular Microbiology and Biotechnology, 1999, 1, 303-5.	1.0	75
194	Filling out the structural map of the NTF2-like superfamily. BMC Bioinformatics, 2013, 14, 327.	2.6	74
195	YjeQ, an Essential, Conserved, Uncharacterized Protein from Escherichia coli, Is an Unusual GTPase with Circularly Permuted G-Motifs and Marked Burst Kinetics. Biochemistry, 2002, 41, 11109-11117.	2.5	73
196	Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics, 2004, 5, 45.	2.8	72
197	Comparative Genome Analysis of the Pathogenic Spirochetes Borrelia burgdorferi and Treponema pallidum. Infection and Immunity, 2000, 68, 1633-1648.	2.2	71
198	Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment. BMC Bioinformatics, 2007, 8, 173.	2.6	71

#	Article	IF	CITATIONS
199	THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nature Immunology, 2017, 18, 433-441.	14.5	71
200	SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends in Biochemical Sciences, 2002, 27, 384-386.	7.5	70
201	Structure of the <i>Plasmodium</i> 6-cysteine s48/45 domain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6692-6697.	7.1	69
202	OST-HTH: a novel predicted RNA-binding domain. Biology Direct, 2010, 5, 13.	4.6	67
203	Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Frontiers in Cellular and Infection Microbiology, 2012, 2, 89.	3.9	67
204	A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13408-13413.	7.1	66
205	Clinical and molecular aspects of malaria fever. Trends in Parasitology, 2011, 27, 442-449.	3.3	66
206	Centrins, Cell Cycle Regulation Proteins in Human Malaria Parasite Plasmodium falciparum. Journal of Biological Chemistry, 2008, 283, 31871-31883.	3.4	65
207	Natural History of the Eukaryotic Chromatin Protein Methylation System. Progress in Molecular Biology and Translational Science, 2011, 101, 105-176.	1.7	65
208	TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiology Letters, 2001, 197, 215-221.	1.8	64
209	MOSC domains: ancient, predicted sulfur-carrier domains, present in diverse metal–sulfur cluster biosynthesis proteins including Molybdenum cofactor sulfurases. FEMS Microbiology Letters, 2002, 207, 55-61.	1.8	64
210	Uncovering a Hidden Distributed Architecture Behind Scale-free Transcriptional Regulatory Networks. Journal of Molecular Biology, 2006, 360, 204-212.	4.2	64
211	RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Research, 2016, 44, 8525-8555.	14.5	64
212	The DOMON domains are involved in heme and sugar recognition. Bioinformatics, 2007, 23, 2660-2664.	4.1	63
213	Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions. Molecular BioSystems, 2012, 8, 1661.	2.9	63
214	New perspectives on the diversification of the <scp>RNA</scp> interference system: insights from comparative genomics and small <scp>RNA</scp> sequencing. Wiley Interdisciplinary Reviews RNA, 2014, 5, 141-181.	6.4	62
215	The Conserved Protein SZY-20 Opposes the Plk4-Related Kinase ZYG-1 to Limit Centrosome Size. Developmental Cell, 2008, 15, 901-912.	7.0	61
216	NONU-1 Encodes a Conserved Endonuclease Required for mRNA Translation Surveillance. Cell Reports, 2020, 30, 4321-4331.e4.	6.4	60

#	Article	IF	CITATIONS
217	Novel autoproteolytic and DNA-damage sensing components in the bacterial SOS response and oxidized methylcytosine-induced eukaryotic DNA demethylation systems. Biology Direct, 2013, 8, 20.	4.6	59
218	A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain. Genome Biology, 2004, 5, R30.	9.6	58
219	Myosin 1G Is an Abundant Class I Myosin in Lymphocytes Whose Localization at the Plasma Membrane Depends on Its Ancient Divergent Pleckstrin Homology (PH) Domain (Myo1PH). Journal of Biological Chemistry, 2010, 285, 8675-8686.	3.4	58
220	Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics, 2018, 19, 750.	2.8	58
221	A colipase fold in the carboxy-terminal domain of the Wnt antagonists – the Dickkopfs. Current Biology, 1998, 8, R477-R479.	3.9	57
222	Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Gene, 2011, 475, 63-78.	2.2	57
223	The C. elegans Polycomb Gene sop-2 Encodes an RNA Binding Protein. Molecular Cell, 2004, 14, 841-847.	9.7	56
224	A TET Homologue Protein from <i>Coprinopsis cinerea</i> (CcTET) That Biochemically Converts 5-Methylcytosine to 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxylcytosine. Journal of the American Chemical Society, 2014, 136, 4801-4804.	13.7	56
225	Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3201-E3210.	7.1	56
226	Comparative Genomics of Protists: New Insights into the Evolution of Eukaryotic Signal Transduction and Gene Regulation. Annual Review of Microbiology, 2007, 61, 453-475.	7.3	55
227	Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Molecular BioSystems, 2011, 7, 2261.	2.9	55
228	The Scaffolding Protein Synapse-Associated Protein 97 Is Required for Enhanced Signaling Through Isotype-Switched IgG Memory B Cell Receptors. Science Signaling, 2012, 5, ra54.	3.6	54
229	Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Research, 2016, 44, 3513-3533.	14.5	54
230	Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses, 2021, 13, 63.	3.3	54
231	Interplay Between Network Structures, Regulatory Modes and Sensing Mechanisms of Transcription Factors in the Transcriptional Regulatory Network of E. coli. Journal of Molecular Biology, 2007, 372, 1108-1122.	4.2	53
232	HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiology Letters, 2003, 222, 17-23.	1.8	52
233	Diversity and evolution of chromatin proteins encoded by DNA viruses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 302-318.	1.9	52
234	Origin of multicellular eukaryotes – insights from proteome comparisons. Current Opinion in Genetics and Development, 1999, 9, 688-694.	3.3	51

#	Article	IF	CITATIONS
235	Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective. Current Opinion in Microbiology, 2003, 6, 490-497.	5.1	51
236	The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. Journal of Cell Science, 2006, 119, 370-379.	2.0	51
237	Adhesion Molecules and Other Secreted Hostâ€Interaction Determinants in Apicomplexa: Insights from Comparative Genomics. International Review of Cytology, 2007, 262, 1-74.	6.2	51
238	HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. Molecular BioSystems, 2009, 5, 269.	2.9	51
239	Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1676-1683.	7.1	51
240	Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature, 2022, 603, 503-508.	27.8	50
241	Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20299-20304.	7.1	49
242	Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. Journal of Bacteriology, 2020, 202, .	2.2	49
243	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45, 1.	1.1	49
244	A Natural Classification of Ribonucleases. Methods in Enzymology, 2001, 341, 3-28.	1.0	48
245	Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition. Nature Structural and Molecular Biology, 2019, 26, 607-612.	8.2	48
246	The ASCH superfamily: novel domains with a fold related to the PUA domain and a potential role in RNA metabolism. Bioinformatics, 2006, 22, 257-263.	4.1	47
247	CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics, 2010, 26, 149-152.	4.1	47
248	A novel superfamily containing the beta-grasp fold involved in binding diverse soluble ligands. Biology Direct, 2007, 2, 4.	4.6	46
249	Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Research, 2010, 38, 5261-5279.	14.5	46
250	Insights from the architecture of the bacterial transcription apparatus. Journal of Structural Biology, 2012, 179, 299-319.	2.8	46
251	Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle, 2012, 11, 3861-3875.	2.6	46
252	Peptide-N-glycanases and DNA repair proteins, Xp-C/Rad4, are, respectively, active and inactivated enzymes sharing a common transglutaminase fold. Human Molecular Genetics, 2001, 10, 1627-1630.	2.9	45

#	Article	IF	CITATIONS
253	Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis. Biology Direct, 2010, 5, 48.	4.6	45
254	Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biology Direct, 2013, 8, 13.	4.6	45
255	The natural history of ubiquitin and ubiquitin-related domains. Frontiers in Bioscience - Landmark, 2012, 17, 1433.	3.0	44
256	Structure–function analysis of manganese exporter proteins across bacteria. Journal of Biological Chemistry, 2018, 293, 5715-5730.	3.4	44
257	Adaptive evolution by optimizing expression levels in different environments. Trends in Microbiology, 2006, 14, 11-14.	7.7	43
258	Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of Sirtuin domain deacetylases by NAD metabolites. Cell Cycle, 2008, 7, 1467-1472.	2.6	42
259	Second Family of Histone Deacetylases. Science, 1998, 280, 1167a-1167.	12.6	41
260	ALOG domains: provenance of plant homeotic and developmental regulators from the DNA-binding domain of a novel class of DIRS1-type retroposons. Biology Direct, 2012, 7, 39.	4.6	41
261	Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. MBio, 2019, 10, .	4.1	41
262	Presence of a classical RRM-fold palm domain in Thg1-type 3'- 5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains. Biology Direct, 2010, 5, 43.	4.6	40
263	ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E151-60.	7.1	40
264	Resilience of biochemical activity in protein domains in the face of structural divergence. Current Opinion in Structural Biology, 2014, 26, 92-103.	5.7	39
265	Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Research, 2020, 48, 10045-10075.	14.5	39
266	Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica, 2000, 108, 25-34.	1,1	38
267	Differential Action of Natural Selection on the N and C-terminal Domains of 2′-5′ Oligoadenylate Synthetases and the Potential Nuclease Function of the C-terminal Domain. Journal of Molecular Biology, 2003, 326, 1449-1461.	4.2	38
268	The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. International Journal of Molecular Sciences, 2019, 20, 1981.	4.1	38
269	DOMON: an ancient extracellular domain in dopamine β-monooxygenase and other proteins. Trends in Biochemical Sciences, 2001, 26, 524-526.	7.5	37
270	Provenance of SET-Domain Histone Methyltransferases Through Duplication of a Simple Structural Unit. Cell Cycle, 2003, 2, 366-373.	2.6	37

#	Article	IF	CITATIONS
271	Structure and Evolution of Ubiquitin and Ubiquitin-Related Domains. Methods in Molecular Biology, 2012, 832, 15-63.	0.9	37
272	Methods to Reconstruct and Compare Transcriptional Regulatory Networks. Methods in Molecular Biology, 2009, 541, 163-180.	0.9	36
273	The PRC-barrel: a widespread, conserved domain shared by photosynthetic reaction center subunits and proteins of RNA metabolism. Genome Biology, 2002, 3, research0061.1.	9.6	35
274	Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16252-16257.	7.1	35
275	A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. RNA Biology, 2014, 11, 360-372.	3.1	35
276	The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Nucleic Acids Research, 2007, 35, 5658-5671.	14.5	34
277	A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases. Biology Direct, 2008, 3, 39.	4.6	34
278	Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice. PLoS ONE, 2009, 4, e6793.	2.5	34
279	HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Molecular Cell, 2020, 77, 384-394.e4.	9.7	34
280	Reconstructing the ubiquitin network - cross-talk with other systems and identification of novel functions. Genome Biology, 2009, 10, R33.	9.6	33
281	MicroRNA targeting in mammalian genomes: genes and mechanisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 148-161.	6.6	33
282	Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. Journal of Bacteriology, 2017, 199, .	2.2	33
283	An RNA Repair Operon Regulated by Damaged tRNAs. Cell Reports, 2020, 33, 108527.	6.4	33
284	The Histone Database: a comprehensive WWW resource for histones and histone fold-containing proteins. Nucleic Acids Research, 2000, 28, 320-322.	14.5	32
285	Host Biomarkers and Biological Pathways That Are Associated with the Expression of Experimental Cerebral Malaria in Mice. Infection and Immunity, 2008, 76, 4518-4529.	2.2	31
286	Selection of the lamprey VLRC antigen receptor repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14834-14839.	7.1	30
287	Evolutionarily ancient BAH–PHD protein mediates Polycomb silencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11614-11623.	7.1	30
288	Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. ELife, 2020, 9, .	6.0	30

#	Article	IF	CITATIONS
289	Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. International Journal of Cardiology, 2015, 185, 114-116.	1.7	29
290	TCRÎ ² -expressing macrophages induced by a pathogenic murine malaria correlate with parasite burden and enhanced phagocytic activity. PLoS ONE, 2018, 13, e0201043.	2.5	29
291	Multiple enzymatic activities of ParB/Srx superfamily mediate sexual conflict among conjugative plasmids. Nature Communications, 2014, 5, 5322.	12.8	28
292	Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. Infection and Immunity, 2015, 83, 3890-3901.	2.2	28
293	Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease. Cell Reports, 2017, 21, 482-494.	6.4	28
294	The SHS2 module is a common structural theme in functionally diverse protein groups, like Rpb7p, FtsA, Gyrl, and MTH1598/TM1083 superfamilies. Proteins: Structure, Function and Bioinformatics, 2004, 56, 795-807.	2.6	27
295	Domain Architectures of the Scm3p Protein Provide Insights into Centromere Function and Evolution. Cell Cycle, 2007, 6, 2511-2515.	2.6	27
296	Protein and DNA Modifications: Evolutionary Imprints of Bacterial Biochemical Diversification and Geochemistry on the Provenance of Eukaryotic Epigenetics. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016063-a016063.	5.5	26
297	Babesia microti: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Frontiers in Microbiology, 2021, 12, 697669.	3.5	26
298	The emergence of catalytic and structural diversity within the beta-clip fold. Proteins: Structure, Function and Bioinformatics, 2004, 55, 977-991.	2.6	25
299	Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in <i>Coprinopsis cinerea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5149-58.	7.1	25
300	MEDS and PocR are novel domains with a predicted role in sensing simple hydrocarbon derivatives in prokaryotic signal transduction systems. Bioinformatics, 2005, 21, 2805-2811.	4.1	24
301	Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. Journal of Biological Chemistry, 2019, 294, 10211-10235.	3.4	24
302	Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genetics, 2017, 13, e1006868.	3.5	24
303	Impaired Hydroxylation of 5-Methylcytosine In TET2 mutated Patients with Myeloid Malignancies. Blood, 2010, 116, 1-1.	1.4	24
304	UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes. Bioinformatics, 2010, 26, 1477-1480.	4.1	23
305	Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3211-E3220.	7.1	23
306	Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. PLoS ONE, 2018, 13, e0204438.	2.5	23

#	Article	IF	CITATIONS
307	The catalytic core of DEMETER guides active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the United States of America, 2019, 116, 17563-17571.	7.1	23
308	Evolutionary convergence and divergence in archaeal chromosomal proteins and Chromo-like domains from bacteria and eukaryotes. Scientific Reports, 2018, 8, 6196.	3.3	22
309	Gene Duplication with Displacement and Rearrangement: Origin of the Bacterial Replication Protein PriB from the Single-Stranded DNA-Binding Protein Ssb. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 225-229.	1.0	21
310	Radiation-Induced Cellular and Molecular Alterations in Asexual Intraerythrocytic Plasmodium falciparum. Journal of Infectious Diseases, 2013, 207, 164-174.	4.0	21
311	Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Frontiers in Genetics, 2014, 5, 424.	2.3	21
312	A Membrane-Tethered Ubiquitination Pathway Regulates Hedgehog Signaling and Heart Development. Developmental Cell, 2020, 55, 432-449.e12.	7.0	21
313	Diversification of Catalytic Activities and Ligand Interactions in the Protein Fold Shared by the Sugar Isomerases, eIF2B, DeoR Transcription Factors, Acyl-CoA Transferases and Methenyltetrahydrofolate Synthetase. Journal of Molecular Biology, 2006, 356, 823-842.	4.2	20
314	The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1160-1166.	0.7	20
315	Molecular Correlates of Experimental Cerebral Malaria Detectable in Whole Blood. Infection and Immunity, 2011, 79, 1244-1253.	2.2	19
316	GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer. Science Advances, 2021, 7, .	10.3	19
317	TET methylcytosine oxidases: new insights from a decade of research. Journal of Biosciences, 2020, 45,	1.1	19
318	Comparison of transcription regulatory interactions inferred from high-throughput methods: what do they reveal?. Trends in Genetics, 2008, 24, 319-323.	6.7	18
319	Genomic donor cassette sharing during <i>VLRA</i> and <i>VLRC</i> assembly in jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14828-14833.	7.1	18
320	A Nonhemolytic Group B Streptococcus Strain Exhibits Hypervirulence. Journal of Infectious Diseases, 2018, 217, 983-987.	4.0	18
321	The bridge-region of the Ku superfamily is an atypical zinc ribbon domain. Journal of Structural Biology, 2010, 172, 294-299.	2.8	17
322	An autoinhibitory conformation of the <i>Bacillus subtilis</i> spore coat protein SpoIVA prevents its premature ATP-independent aggregation. FEMS Microbiology Letters, 2014, 358, 145-153.	1.8	17
323	Unification and extensive diversification of M/Orf3-related ion channel proteins in coronaviruses and other nidoviruses. Virus Evolution, 2021, 7, veab014.	4.9	17
324	Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. ELife, 2021, 10, .	6.0	17

#	Article	IF	CITATIONS
325	Bacterial homologs of the small subunit of eukaryotic DNA primase. Journal of Molecular Microbiology and Biotechnology, 2000, 2, 509-12.	1.0	17
326	Computational analysis of human disease-associated genes and their protein products. Current Opinion in Genetics and Development, 2001, 11, 247-257.	3.3	16
327	AMIN domains have a predicted role in localization of diverse periplasmic protein complexes. Bioinformatics, 2008, 24, 2423-2426.	4.1	16
328	High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeast. Molecular BioSystems, 2009, 6, 175-181.	2.9	16
329	Apprehending multicellularity: Regulatory networks, genomics, and evolution. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 143-164.	3.6	15
330	Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Frontiers in Microbiology, 2019, 10, 623.	3.5	15
331	Antigen Discovery, Bioinformatics and Biological Characterization of Novel Immunodominant Babesia microti Antigens. Scientific Reports, 2020, 10, 9598.	3.3	15
332	The cyl Genes Reveal the Biosynthetic and Evolutionary Origins of the Group B Streptococcus Hemolytic Lipid, Granadaene. Frontiers in Microbiology, 2019, 10, 3123.	3.5	15
333	Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Principles and Biochemical Novelty. Annual Review of Biomedical Data Science, 2022, 5, 367-391.	6.5	15
334	Plasmodium falciparum: Characterization of a late asexual stage Golgi protein containing both ankyrin and DHHC domains. Experimental Parasitology, 2005, 110, 389-393.	1.2	14
335	General Trends in the Evolution of Prokaryotic Transcriptional Regulatory Networks. , 2007, 3, 66-80.		14
336	Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. Journal of Biology, 2009, 8, 29.	2.7	14
337	Transcription factors, chromatin proteins and the diversification of Hemiptera. Insect Biochemistry and Molecular Biology, 2016, 69, 1-13.	2.7	14
338	Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle, 2017, 16, 1093-1103.	2.6	14
339	Inferring joint sequence-structural determinants of protein functional specificity. ELife, 2018, 7, .	6.0	14
340	Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. Cell Cycle, 2003, 2, 369-76.	2.6	14
341	Molecular Markers of Radiation Induced Attenuation in Intrahepatic Plasmodium falciparum Parasites. PLoS ONE, 2016, 11, e0166814.	2.5	13
342	Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions. Molecular BioSystems, 2010, 6, 1475.	2.9	12

#	Article	IF	CITATIONS
343	Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. ELife, 2021, 10, .	6.0	12
344	The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiology Letters, 1999, 176, 111-116.	1.8	10
345	Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Developmental Cell, 2022, 57, 344-360.e6.	7.0	10
346	The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biology Direct, 2015, 10, 21.	4.6	9
347	Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Frontiers in Genetics, 2020, 11, 34.	2.3	9
348	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	2.6	8
349	THE KNICKKOPF DOMON DOMAIN IS ESSENTIAL FOR CUTICLE DIFFERENTIATION IN <i>Drosophila melanogaster</i> . Archives of Insect Biochemistry and Physiology, 2014, 86, 100-106.	1.5	8
350	Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions. BMC Bioinformatics, 2015, 16, 7.	2.6	8
351	Unexpected Evolution of Lesion-Recognition Modules in Eukaryotic NER and Kinetoplast DNA Dynamics Proteins from Bacterial Mobile Elements. IScience, 2018, 9, 192-208.	4.1	8
352	"RETRACTED ARTICLE: Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nature Communications, 2018, 9, 3899.	12.8	8
353	The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains. Biology Direct, 2009, 4, 25.	4.6	7
354	Evolutionary and Biochemical Aspects of Chemical Stress Resistance in Saccharomyces cerevisiae. Frontiers in Genetics, 2012, 3, 47.	2.3	7
355	Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria. Antonie Van Leeuwenhoek, 2018, 111, 753-760.	1.7	7
356	Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. MBio, 2020, 11, .	4.1	7
357	Origin and evolution of eukaryotic apoptosis: the bacterial connection. , 0, .		7
358	GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biology, 2022, 20, 68.	3.8	6
359	The Xâ€ray crystallographic structure and activity analysis of a <i>Pseudomonasâ€</i> specific subfamily of the HAD enzyme superfamily evidences a novel biochemical function. Proteins: Structure, Function and Bioinformatics, 2008, 70, 197-207.	2.6	5
360	Multifunctional Involvement of a C2H2 Zinc Finger Protein (PbZfp) in Malaria Transmission, Histone Modification, and Susceptibility to DNA Damage Response. MBio, 2017, 8, .	4.1	5

#	Article	IF	CITATIONS
361	Differences in evolutionary pressure acting within highly conserved ortholog groups. BMC Evolutionary Biology, 2008, 8, 208.	3.2	4
362	Unusual Activity of a <i>Chlamydomonas</i> TET/JBP Family Enzyme. Biochemistry, 2019, 58, 3627-3629.	2.5	4
363	Gene-teratogen interactions influence the penetrance of birth defects by altering Hedgehog signaling strength. Development (Cambridge), 2021, 148, .	2.5	4
364	TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiology Letters, 2001, 197, 215-221.	1.8	4
365	The TET/JBP Family of Nucleic Acid Base-Modifying 2-Oxoglutarate and Iron-Dependent Dioxygenases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 289-308.	0.8	4
366	PSI-BLAST Tutorial. , 0, , 177-186.		4
367	Exploring histones and their relatives with the Histone Sequence Database. Trends in Genetics, 2000, 16, 517-518.	6.7	3
368	Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1167-1173.	0.7	3
369	Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. BMC Bioinformatics, 2013, 14, 265.	2.6	3
370	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily This article is a U.S. Goverment work and, as such, is in the public domain in the United States of America.A list of the Genbank identifier numbers of all the identified START domains, including the 59 plant proteins, is available at ftp://ncbi.nlm.nih.gov/pub/aravind/ Proteins: Structure, Function and Bioinformatics, 2001, 43, 134.	2.6	3
371	No Sec7-homology domain in guanine-nucleotide-exchange factors that act on Ras and Rho. Trends in Biochemical Sciences, 1999, 24, 177-178.	7.5	2
372	The two faces of short-range evolutionary dynamics of regulatory modes in bacterial transcriptional regulatory networks. BioEssays, 2007, 29, 625-629.	2.5	2
373	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. , 2001, 43, 134.		2
374	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. BMC Bioinformatics, 2014, 15, 75.	2.6	1
375	Intraproteomic Networks: New Forays Into Predicting Interaction Partners. Genome Research, 2002, 12, 1156-1158.	5.5	Ο
376	Global transcriptional effects of PEG-IFN-α and ribavirin on peripheral blood cells obtained from patients with chronic hepatitis C. Hepatology Research, 2006, 36, 277-287.	3.4	0
377	Opening Pandora's Box: making biological discoveries through computational data exploration. Biology Direct, 2007, 2, 29.	4.6	0
378	Incarnation of classical pro- and eukaryotic mechanisms of mutagenesis in hypermutagenesis and immunity of vertebrates. Russian Journal of Genetics, 2007, 43, 1093-1107.	0.6	0

#	Article	IF	CITATIONS
379	Editorial overview: Sequences and topology: sequences, structures, genomes and populations. Current Opinion in Structural Biology, 2014, 26, vii-viii.	5.7	ο
380	Editorial overview: Sequences and topology: Protein function - synthesizing information from sequence, structure and disorder. Current Opinion in Structural Biology, 2016, 38, vii-ix.	5.7	0