Gordon Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549785/publications.pdf

Version: 2024-02-01

237 papers

7,100 citations

35 h-index 70 g-index

246 all docs

246 docs citations

times ranked

246

5523 citing authors

#	Article	IF	CITATIONS
1	An Empirical Study of Active Inference on a Humanoid Robot. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 462-471.	3.8	31
2	Wholeâ∈Body Multicontact Haptic Human–Humanoid Interaction Based on Leader–Follower Switching: A Robot Dance of the "Box Step― Advanced Intelligent Systems, 2022, 4, 2100038.	6.1	8
3	Interactive Force Control Based on Multimodal Robot Skin for Physical Humanâ^'Robot Collaboration. Advanced Intelligent Systems, 2022, 4, 2100047.	6.1	11
4	Distinct spatio-temporal and spectral brain patterns for different thermal stimuli perception. Scientific Reports, 2022, 12, 919.	3.3	4
5	Tactile-Based Assistive Method to Support Physical Therapy Routines in a Lightweight Upper-Limb Exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 541-549.	3.2	5
6	In-Hand Admittance Controller for a Robotic Assistive Walker Based on Tactile Grasping Feedback. IEEE Robotics and Automation Letters, 2022, 7, 8845-8852.	5.1	1
7	Admittance Model Optimization for Gait Balance Assistance of a Robotic Walker: Passive Model-based Mechanical Assessment., 2022,,.		1
8	Preemptive Foot Compliance to Lower Impact During Biped Robot Walking Over Unknown Terrain. IEEE Robotics and Automation Letters, 2022, 7, 8006-8011.	5.1	4
9	Focusing on the face or getting distracted by social signals? The effect of distracting gestures on attentional focus in natural interaction. Psychological Research, 2021, 85, 491-502.	1.7	6
10	Perception and Evaluation in Human–Robot Interaction: The Human–Robot Interaction Evaluation Scale (HRIES)—A Multicomponent Approach of Anthropomorphism. International Journal of Social Robotics, 2021, 13, 1517-1539.	4.6	43
11	Inertial Parameter Identification in Robotics: A Survey. Applied Sciences (Switzerland), 2021, 11, 4303.	2.5	26
12	Optimal Order Pick-and-Place of Objects in Cluttered Scene by a Mobile Manipulator. IEEE Robotics and Automation Letters, 2021, 6, 6402-6409.	5.1	4
13	Demonstrating the Viability of Mapping Deep Learning Based EEG Decoders to Spiking Networks on Low-powered Neuromorphic Chips., 2021, 2021, 6102-6105.		O
14	A Comparative Pilot Study on ErrPs for Different Usage Conditions of an Exoskeleton with a Mobile EEG Device., 2021, 2021, 6203-6206.		1
15	Using Robot Skin to Support Physical Therapy Routines with a Lightweight Upper-Limb Exoskeleton. , 2021, , .		0
16	Wrist Exoskeleton Design for Pronation and Supination using Mirrored Movement Control., 2021,,.		4
17	Attention-based active visual search for mobile robots. Autonomous Robots, 2020, 44, 131-146.	4.8	15
18	A review on neural network models of schizophrenia and autism spectrum disorder. Neural Networks, 2020, 122, 338-363.	5.9	101

#	Article	IF	Citations
19	Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 2020, 370, 966-970.	12.6	361
20	High-Performance Perpendicularly-Enfolded-Textile Actuators for Soft Wearable Robots: Design and Realization. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 309-319.	3.2	23
21	Calibration-Free Error-Related Potential Decoding With Adaptive Subject-Independent Models: A Comparative Study. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 399-409.	3.2	6
22	Neuroengineering challenges of fusing robotics and neuroscience. Science Robotics, 2020, 5, .	17.6	36
23	EO-MTRNN: evolutionary optimization of hyperparameters for a neuro-inspired computational model of spatiotemporal learning. Biological Cybernetics, 2020, 114, 363-387.	1.3	5
24	Decoding of Pain Perception using EEG Signals for a Real-Time Reflex System in Prostheses: A Case Study. Scientific Reports, 2020, 10, 5606.	3.3	25
25	Robust Localization with Architectural Floor Plans and Depth Camera. , 2020, , .		5
26	Plantar Tactile Feedback for Biped Balance and Locomotion on Unknown Terrain. International Journal of Humanoid Robotics, 2020, 17, 1950036.	1.1	9
27	Design and Realization of an Efficient Large-Area Event-Driven E-Skin. Sensors, 2020, 20, 1965.	3.8	16
28	Kognitive Systeme und Neurorobotik. Springer Reference Geisteswissenschaften, 2020, , 1-27.	0.0	0
29	Sensory stimulation enhances phantom limb perception and movement decoding. Journal of Neural Engineering, 2020, 17, 056006.	3.5	14
30	Online Configuration Selection for Redundant Arrays of Inertial Sensors: Application to Robotic Systems Covered with a Multimodal Artificial Skin. , 2020, , .		0
31	The Robot as Scientist: Using Mental Simulation to Test Causal Hypotheses Extracted from Human Activities in Virtual Reality. , 2020, , .		6
32	Evaluation of a Large Scale Event Driven Robot Skin. IEEE Robotics and Automation Letters, 2019, 4, 4247-4254.	5.1	12
33	CHiMP: A Contact based Hilbert Map Planner. , 2019, , .		0
34	Pressure-Driven Body Compliance Using Robot Skin. IEEE Robotics and Automation Letters, 2019, 4, 4418-4423.	5.1	9
35	Predictive Optimization of Assistive Force in Admittance Control-Based Physical Interaction for Robotic Gait Assistance. IEEE Robotics and Automation Letters, 2019, 4, 3609-3616.	5.1	8
36	A survey on semantic-based methods for the understanding of human movements. Robotics and Autonomous Systems, 2019, 119, 31-50.	5.1	17

#	Article	IF	CITATIONS
37	Enabling the sense of touch in EMG-controlled hand prostheses using vibro-tactile stimulation. , 2019, , .		O
38	Reward-Punishment Actor-Critic Algorithm Applying to Robotic Non-grasping Manipulation. , 2019, , .		2
39	A Comprehensive Realization of Robot Skin: Sensors, Sensing, Control, and Applications. Proceedings of the IEEE, 2019, 107, 2034-2051.	21.3	110
40	Whole-Body Active Compliance Control for Humanoid Robots with Robot Skin., 2019,,.		18
41	Tactile-Based Whole-Body Compliance With Force Propagation for Mobile Manipulators. IEEE Transactions on Robotics, 2019, 35, 330-342.	10.3	24
42	A Semantic-Based Method for Teaching Industrial Robots New Tasks. KI - Kunstliche Intelligenz, 2019, 33, 117-122.	3.2	10
43	A closed-loop, music-based brain-computer interface for emotion mediation. PLoS ONE, 2019, 14, e0213516.	2.5	40
44	A prototype of a P300 based brain-robot interface to enable multi-modal interaction for patients with limited mobility. , 2019, , .		3
45	Tactile Hallucinations on Artificial Skin Induced by Homeostasis in a Deep Boltzmann Machine. , 2019, , .		1
46	A comparative study on adaptive subject-independent classification models for zero-calibration error-potential decoding. , 2019, , .		3
47	Multi-Contacts Force-Reactive Walking Control during Physical Human-Humanoid Interaction. , 2019, ,		5
48	A computational model of human decision making and learning for assessment of co-adaptation in neuro-adaptive human-robot interaction. , 2019, , .		6
49	Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware. Journal of Neural Engineering, 2019, 16, 026014.	3.5	29
50	A Feasibility Study for Validating Robot Actions Using EEG-Based Error-Related Potentials. International Journal of Social Robotics, 2019, 11, 271-283.	4.6	39
51	Purposive learning: Robot reasoning about the meanings of human activities. Science Robotics, 2019, 4,	17.6	21
52	Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Sensors, 2019, 19, 210.	3.8	125
53	Tactile-based active object discrimination and target object search in an unknown workspace. Autonomous Robots, 2019, 43, 123-152.	4.8	42
54	Hierarchical Force and Positioning Task Specification for Indirect Force Controlled Robots. IEEE Transactions on Robotics, 2018, 34, 280-286.	10.3	17

#	Article	IF	CITATIONS
55	Active Tactile Transfer Learning for Object Discrimination in an Unstructured Environment Using Multimodal Robotic Skin. International Journal of Humanoid Robotics, 2018, 15, 1850001.	1.1	34
56	Integration of Robotic Technologies for Rapidly Deployable Robots. IEEE Transactions on Industrial Informatics, 2018, 14, 1691-1700.	11.3	36
57	Adaptive Robot Body Learning and Estimation Through Predictive Coding. , 2018, , .		45
58	Adaptive Friction Compensation for Humanoid Robots without Joint-Torque Sensors., 2018,,.		0
59	A Robust and Efficient Dynamic Network Protocol for a large-scale artificial robotic skin. , 2018, , .		5
60	Enhancing Biped Locomotion on Unknown Terrain Using Tactile Feedback. , 2018, , .		18
61	Drifting perceptual patterns suggest prediction errors fusion rather than hypothesis selection: replicating the rubber-hand illusion on a robot. , 2018 , , .		14
62	Efficient Distributed Torque Computation for Large Scale Robot Skin. , 2018, , .		6
63	Efficient Event-Driven Forward Kinematics of Open Kinematic Chains with O(Log n) Complexity. , 2018, , .		0
64	Over-Stretching Tolerant Conductors on Rubber Films by Inkjet-Printing Silver Nanoparticles for Wearables. Polymers, 2018, 10, 1413.	4.5	19
65	A Self-Verifying Cognitive Architecture for Robust Bootstrapping of Sensory-Motor Skills via Multipurpose Predictors. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 1081-1095.	3.8	9
66	Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces. Journal of Neural Engineering, 2018, 15, 065003.	3.5	34
67	Human-agent co-adaptation using error-related potentials. Journal of Neural Engineering, 2018, 15, 066014.	3.5	56
68	Robust Tactile Descriptors for Discriminating Objects From Textural Properties via Artificial Robotic Skin. IEEE Transactions on Robotics, 2018, 34, 985-1003.	10.3	68
69	Active Prior Tactile Knowledge Transfer for Learning Tactual Properties of New Objects. Sensors, 2018, 18, 634.	3 . 8	22
70	Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artificial Intelligence, 2017, 247, 95-118.	5.8	87
71	Added Value of Gaze-Exploiting Semantic Representation to Allow Robots Inferring Human Behaviors. ACM Transactions on Interactive Intelligent Systems, 2017, 7, 1-30.	3.7	11
72	Yielding Self-Perception in Robots Through Sensorimotor Contingencies. IEEE Transactions on Cognitive and Developmental Systems, 2017, 9, 100-112.	3.8	24

#	Article	IF	CITATIONS
73	A Tactile-Based Framework for Active Object Learning and Discrimination using Multimodal Robotic Skin. IEEE Robotics and Automation Letters, 2017, 2, 2143-2150.	5.1	43
74	Using intentional contact to achieve tasks in tight environments. , 2017, , .		3
75	TOMM: Tactile omnidirectional mobile manipulator. , 2017, , .		34
76	O (logn) algorithm for forward kinematics under asynchronous sensory input. , 2017, , .		2
77	Passivity-based control of underactuated biped robots within hybrid zero dynamics approach. , 2017, , .		9
78	Dynamic motion learning for multi-DOF flexible-joint robots using active–passive motor babbling through deep learning. Advanced Robotics, 2017, 31, 1002-1015.	1.8	16
79	On-line simultaneous learning and recognition of everyday activities from virtual reality performances., 2017,,.		30
80	A closed-loop brain-computer music interface for continuous affective interaction., 2017,,.		9
81	A scalable method for multi-stage developmental learning for reaching. , 2017, , .		6
82	Enactive self: A study of engineering perspectives to obtain the sensorimotor self through enaction. , $2017, \dots$		13
83	Tactile-based object center of mass exploration and discrimination. , 2017, , .		18
84	Effects of short-term piano training on measures of finger tapping, somatosensory perception and motor-related brain activity in patients with cerebral palsy. Neuropsychiatric Disease and Treatment, 2017, Volume 13, 2705-2718.	2.2	20
85	Efficient event-driven reactive control for large scale robot skin. , 2017, , .		10
86	A Simple and Practical Sensorimotor EEG Device for Recording in Patients with Special Needs. , 2017, , .		5
87	Integration of a Thin Film PDMS-Based Capacitive Sensor for Tactile Sensing in an Electronic Skin. Journal of Sensors, 2016, 2016, 1-7.	1.1	33
88	Re-using prior tactile experience by robotic hands to discriminate in-hand objects via texture properties. , 2016, , .		18
89	Partitioning algorithm for a resource-constrained robotic skin sensor network. , 2016, , .		0
90	Multisensory object discovery via self-detection and artificial attention., 2016,,.		3

#	Article	IF	Citations
91	Progressive learning of sensory-motor maps through spatiotemporal predictors., 2016,,.		9
92	General recognition models capable of integrating multiple sensors for different domains. , 2016, , .		4
93	A neuro-based method for detecting context-dependent erroneous robot action. , 2016, , .		19
94	Tactile-based manipulation of deformable objects with dynamic center of mass., 2016,,.		48
95	Extracting general task structures to accelerate the learning of new tasks. , 2016, , .		8
96	Exploiting ankle torque for orbital stabilization in biped robots; a hybrid zero dynamics approach., 2016,,.		1
97	From multi-modal tactile signals to a compliant control. , 2016, , .		15
98	Tactile-based compliance with hierarchical force propagation for omnidirectional mobile manipulators. , 2016, , .		10
99	Event-based signaling for large-scale artificial robotic skin - realization and performance evaluation. , 2016, , .		32
100	Robotic technologies for fast deployment of industrial robot systems. , 2016, , .		20
101	Embodied artificial agents for understanding human social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150375.	4.0	118
102	Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Scientific Reports, 2016, 6, 30383.	3.3	326
103	Online prediction of activities with structure: Exploiting contextual associations and sequences. , 2015, , .		0
104	Autistic traits and sensitivity to human-like features of robot behavior. Interaction Studies, 2015, 16, 219-248.	0.6	24
105	Event-based signaling for reducing required data rates and processing power in a large-scale artificial robotic skin. , 2015, , .		21
106	Herbert: Design and Realization of a Full-Sized Anthropometrically Correct Humanoid Robot. Frontiers in Robotics and AI, 2015, 2, .	3.2	0
107	Robust semantic representations for inferring human co-manipulation activities even with different demonstration styles. , 2015, , .		16
108	In-hand object recognition via texture properties with robotic hands, artificial skin, and novel tactile descriptors. , 2015 , , .		39

#	Article	IF	CITATIONS
109	Humans are Well Tuned to Detecting Agents Among Non-agents: Examining the Sensitivity of Human Perception to Behavioral Characteristics of Intentional Systems. International Journal of Social Robotics, 2015, 7, 767-781.	4.6	39
110	Integrating CNT force sensors into a multimodal modular electronic skin. , 2015, , .		1
111	Robust second order sliding mode control for 6D position based visual servoing with a redundant mobile manipulator. , 2015, , .		9
112	Realizing whole-body tactile interactions with a self-organizing, multi-modal artificial skin on a humanoid robot. Advanced Robotics, 2015, 29, 51-67.	1.8	95
113	Understanding the intention of human activities through semantic perception: observation, understanding and execution on a humanoid robot. Advanced Robotics, 2015, 29, 345-362.	1.8	37
114	Augmenting Affect from Speech with Generative Music. , 2015, , .		5
115	Humanoids learn touch modalities identification via multi-modal robotic skin and robust tactile descriptors. Advanced Robotics, 2015, 29, 1411-1425.	1.8	37
116	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.8	155
117	Atypical modulation of hypothalamic activity by social context in ASD. Research in Autism Spectrum Disorders, 2015, 10, 41-50.	1.5	24
118	Realising Herbert: An affordable design approach of an anthropometrically correct compliant humanoid robot. , 2014, , .		3
119	A scalable and efficient method for salient region detection using sampled template collation. , 2014, , .		5
120	A new method for solving 6D Image-Based Visual Servoing with virtual composite camera model. , 2014, , .		3
121	Bootstrapping humanoid robot skills by extracting semantic representations of human-like activities from virtual reality. , $2014, \ldots$		11
122	A fast and scalable system for visual attention, object based attention and object recognition for humanoid robots. , 2014 , , .		3
123	Humanoids learn object properties from robust tactile feature descriptors via multi-modal artificial skin. , 2014 , , .		14
124	Automatic robot kinematic modeling with a modular artificial skin. , 2014, , .		8
125	Constrained manipulation in unstructured environment utilizing hierarchical task specification for indirect force controlled robots. , 2014 , , .		1
126	Learning diverse motor patterns with a single multi-layered multi-pattern CPG for a humanoid robot. , 2014, , .		8

#	Article	IF	Citations
127	Predictive action selector for generating meaningful robot behaviour from minimum amount of samples. , $2014, \ldots$		6
128	When to engage in interaction & amp; $\#x2014$; And how? EEG-based enhancement of robot's ability to sense social signals in HRI., 2014, , .		15
129	3D spatial self-organization of a modular artificial skin. , 2014, , .		18
130	A concurrent real-time biologically-inspired visual object recognition system. , 2014, , .		1
131	Automatic segmentation and recognition of human activities from observation based on semantic reasoning. , 2014, , .		21
132	Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biological Cybernetics, 2014, 108, 291-303.	1.3	75
133	A neuron-inspired computational architecture for spatiotemporal visual processing. Biological Cybernetics, 2014, 108, 249-259.	1.3	1
134	Versatile modular electronics for rapid design and development of humanoid robotic subsystems. , 2014, , .		3
135	Hierarchical inequality task specification for indirect force controlled robots using quadratic programming. , 2014, , .		5
136	Humanoid Robotics and Neuroscience: Science, Engineering, and Society. Frontiers in Neuroengineering Series, 2014, , 3-28.	0.4	4
137	Effects of 3D Shape and Texture on Gender Identification for a Retro-Projected Face Screen. International Journal of Social Robotics, 2013, 5, 627-639.	4.6	2
138	A general tactile approach for grasping unknown objects with a humanoid robot., 2013,,.		9
139	Qualitative Adaptive Reward Learning With Success Failure Maps: Applied to Humanoid Robot Walking. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 81-93.	11.3	25
140	Directions Toward Effective Utilization of Tactile Skin: A Review. IEEE Sensors Journal, 2013, 13, 4121-4138.	4.7	356
141	Enhancing human action recognition through spatio-temporal feature learning and semantic rules. , 2013, , .		13
142	Enhancing object recognition for humanoid robots through time-awareness., 2013,,.		5
143	A practical approach to generalized hierarchical task specification for indirect force controlled robots. , 2013, , .		6
144	Development of an integrated multi-modal communication robotic face. , 2012, , .		3

#	Article	IF	CITATIONS
145	Design and emotional expressiveness of Gertie (An open hardware robotic desk lamp). , 2012, , .		4
146	Open-loop self-calibration of articulated robots with artificial skins. , 2012, , .		20
147	A set-point-generator for indirect-force-controlled manipulators operating unknown constrained mechanisms. , $2012, , .$		1
148	3D surface reconstruction for robotic body parts with artificial skins., 2012,,.		40
149	Gender identification bias induced with texture images on a life size retro-projected face screen. , 2012, , .		6
150	Automatic face replacement for a humanoid robot with 3D face shape display. , 2012, , .		4
151	"Mask-Bot 2i": An active customisable robotic head with interchangeable face. , 2012, , .		10
152	Integrating discrete force cells into multi-modal artificial skin. , 2012, , .		25
153	FMRI study of young adults with autism interacting with a humanoid robot. , 2012, , .		20
154	How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Frontiers in Human Neuroscience, 2012, 6, 103.	2.0	85
155	"Mask-bot": A life-size robot head using talking head animation for human-robot communication., 2011,,.		31
156	Accelerometer based robotic joint orientation estimation., 2011,,.		6
157	Humanoid Multimodal Tactile-Sensing Modules. IEEE Transactions on Robotics, 2011, 27, 401-410.	10.3	233
158	Robot Companions for Citizens. Procedia Computer Science, 2011, 7, 47-51.	2.0	24
159	High performance integrated electro-hydraulic actuator for robotics – Part I: Principle, prototype design and first experiments. Sensors and Actuators A: Physical, 2011, 169, 115-123.	4.1	51
160	High performance Integrated Electro-Hydraulic Actuator for robotics. Part II: Theoretical modelling, simulation, control & Departments on with real measurements. Sensors and Actuators A: Physical, 2011, 169, 124-132.	4.1	20
161	Generalizing behavior obtained from sparse demonstration. , 2011, , .		0
162	Fast adaptation for effect-aware pushing. , 2011, , .		18

#	Article	IF	Citations
163	Self-organizing sensory-motor map for low-level touch reactions. , 2011, , .		9
164	Extracting and generalizing primitive actions from sparse demonstration., 2011,,.		3
165	Guest Editorial Representations and Architectures for Cognitive Systems. IEEE Transactions on Autonomous Mental Development, 2010, 2, 265-266.	1.6	1
166	IEEE Transactions on Autonomous Mental Development. IEEE Computational Intelligence Magazine, 2010, 5, 61-61.	3.2	0
167	A control strategy for operating unknown constrained mechanisms. , 2010, , .		18
168	Prediction of action outcomes using an object model. , 2010, , .		10
169	A Study of Adaptive Locomotive Behaviors of a Biped Robot: Patterns Generation and Classification. Lecture Notes in Computer Science, 2010, , 313-324.	1.3	12
170	Social cognitive neuroscience and humanoid robotics. Journal of Physiology (Paris), 2009, 103, 286-295.	2.1	79
171	Experience-based learning mechanism for neural controller adaptation: Application to walking biped robots., 2009,,.		6
172	Humanoid technologies: "Know-how― Robotics and Autonomous Systems, 2008, 56, 1-3.	5.1	3
173	A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a Coupled Oscillator Model. , 2008, 24, 185-191.		98
174	From self-observation to imitation: Visuomotor association on a robotic hand. Brain Research Bulletin, 2008, 75, 775-784.	3.0	42
175	Simulation and design of 3-DOF eye mechanism using Listing's law. , 2008, , .		2
176	Highly Precise Dynamic Simulation Environment for Humanoid Robots. Advanced Robotics, 2008, 22, 1075-1105.	1.8	8
177	Inverse kinematics with floating base and constraints for full body humanoid robot control. , 2008, , .		51
178	Humanoid batting with bipedal balancing. , 2008, , .		5
179	BIOLOGICALLY BASED TOP-DOWN ATTENTION MODULATION FOR HUMANOID INTERACTIONS. International Journal of Humanoid Robotics, 2008, 05, 3-24.	1.1	17
180	Learning to Acquire Whole-Body Humanoid Center of Mass Movements to Achieve Dynamic Tasks. Advanced Robotics, 2008, 22, 1125-1142.	1.8	7

#	Article	IF	Citations
181	CB: Exploring neuroscience with a humanoid research platform. , 2008, , .		3
182	MAKING OBJECT LEARNING AND RECOGNITION AN ACTIVE PROCESS. International Journal of Humanoid Robotics, 2008, 05, 267-286.	1.1	33
183	Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot. International Journal of Robotics Research, 2008, 27, 213-228.	8.5	167
184	Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction. , 2008, , .		10
185	Hierarchical motor learning and synthesis with passivity-based controller and phase oscillator. , 2008, , .		6
186	From Biologically Realistic Imitation to Robot Teaching Via Human Motor Learning. Lecture Notes in Computer Science, 2008, , 214-221.	1.3	2
187	A simple approach to diverse humanoid locomotion. , 2007, , .		2
188	CB: a humanoid research platform for exploring neuroscience. Advanced Robotics, 2007, 21, 1097-1114.	1.8	165
189	Improving humanoid locomotive performance with learnt approximated dynamics via Gaussian processes for regression., 2007,,.		15
190	Exploiting similarities for robot perception. , 2007, , .		3
191	Simultaneous adaptation to rough terrain and unknown external forces for biped humanoids. , 2007, , .		8
192	Learning to acquire whole-body humanoid CoM movements to achieve dynamic tasks. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	8
193	Extensive Human Training for Robot Skill Synthesis: Validation on a Robotic Hand. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	9
194	Disturbance Rejection for Biped Humanoids. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	43
195	Synthesizing goal-directed actions from a library of example movements. , 2007, , .		13
196	Real-time acoustic source localization in noisy environments for human-robot multimodal interaction. , 2007, , .		21
197	Full-Body Compliant Human–Humanoid Interaction: Balancing in the Presence of Unknown External Forces. IEEE Transactions on Robotics, 2007, 23, 884-898.	10.3	281
198	Gravity Compensation and Full-Body Balancing for Humanoid Robots. , 2006, , .		36

#	Article	IF	CITATIONS
199	Unconstrained Real-time Markerless Hand Tracking for Humanoid Interaction. , 2006, , .		28
200	Coaching: An Approach to Efficiently and Intuitively Create Humanoid Robot Behaviors. , 2006, , .		19
201	CB: A Humanoid Research Platform for Exploring NeuroScience. , 2006, , .		56
202	Learning feature representations for an object recognition system. , 2006, , .		7
203	A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 2006, 69, 1354-1361.	5.9	20
204	Dexterous Skills Transfer by Extending Human Body Schema to a Robotic Hand., 2006,,.		21
205	Learning Similar Tasks From Observation and Practice. , 2006, , .		21
206	Passivity-Based Full-Body Force Control for Humanoids and Application to Dynamic Balancing and Locomotion. , 2006, , .		53
207	HAND–EYE COORDINATION THROUGH ENDPOINT CLOSED-LOOP AND LEARNED ENDPOINT OPEN-LOOP VISUAL SERVO CONTROL. International Journal of Humanoid Robotics, 2005, 02, 203-224.	1.1	4
208	HUMAN–HUMANOID INTERACTION: IS A HUMANOID ROBOT PERCEIVED AS A HUMAN?. International Journal of Humanoid Robotics, 2005, 02, 537-559.	1.1	101
209	LEARNING TO ACT FROM OBSERVATION AND PRACTICE. International Journal of Humanoid Robotics, 2004, 01, 585-611.	1.1	40
210	Discovering optimal imitation strategies. Robotics and Autonomous Systems, 2004, 47, 69-77.	5.1	140
211	Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 2004, 47, 79-91.	5.1	361
212	Learning tasks from observation and practice. Robotics and Autonomous Systems, 2004, 47, 163-169.	5.1	84
213	Learning from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems, 2004, 47, 79-79.	5.1	25
214	Discovering optimal imitation strategies. Robotics and Autonomous Systems, 2004, 47, 69-69.	5.1	4
215	The ETL-Humanoid system—a high-performance full-body humanoid system for versatile real-world interaction. Advanced Robotics, 2003, 17, 149-164.	1.8	17
216	Discovering imitation strategies through categorization of multi-dimensional data., 2003,,.		13

#	Article	IF	CITATIONS
217	ETL-Humanoid: A Research Vehicle for Open-Ended Action Imitation. , 2003, , 67-82.		33
218	Supervised Autonomy: A Framework for Human-Robot Systems Development., 2001, 10, 251-266.		35
219	Continuous humanoid interaction:. Robotics and Autonomous Systems, 2001, 37, 161-183.	5.1	33
220	Development of a Biologically Inspired Real-Time Visual Attention System. Lecture Notes in Computer Science, 2000, , 150-159.	1.3	25
221	A Humanoid Vision System for Versatile Interaction. Lecture Notes in Computer Science, 2000, , 512-526.	1.3	2
222	Interfacing Agents through Boundaries of Interaction Dynamics. , 2000, , 289-296.		0
223	Experiments in realising cooperation between autonomous mobile robots. Lecture Notes in Control and Information Sciences, 1998, , 609-620.	1.0	24
224	Complex continuous meaningful humanoid interaction: a multi sensory-cue based approach. , 0, , .		19
225	Development of a high-performance upper-body humanoid system. , 0, , .		10
226	Combining peripheral and foveal humanoid vision to detect, pursue, recognize and act., 0,,.		15
227	Examining human walking characteristics with a telescopic compass-like biped walker model. , 0, , .		12
228	Distributed visual attention on a humanoid robot. , 0, , .		31
229	Imitation bootstrapping: experiments on a robotic hand. , 0, , .		8
230	Poincar \tilde{A} \mathbb{O} -Map-Based Reinforcement Learning For Biped Walking. , 0, , .		34
231	Real-time stereo facial feature tracking: mimicking human mouth movement on a humanoid robot head.		4
232	Experimental Studies of a Neural Oscillator for Biped Locomotion with QRIO., 0,,.		60
233	Motor interference between Humans and Humanoid Robots: Effect of Biological and Artificial Motion. , 0, , .		38
234	Foveated vision systems with two cameras per eye. , 0, , .		30

#	Article	IF	CITATIONS
235	Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking. , 0, , .		60
236	Challenges and issues faced in building a framework for conducting research in learning from observation., 0,, 47-66.		1
237	Screen-printed capacitive pressure sensors with high sensitivity and accuracy on flexible substrates. Flexible and Printed Electronics, 0, , .	2.7	1