
MarÃ-a Rosa Ponce Molet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7549565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Missplicing suppressor alleles of Arabidopsis <i>PRE-MRNA PROCESSING FACTORÂ8</i> increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Research, 2022, 50, 5513-5527.	14.5	0
2	A cornucopia of mutants for understanding plant embryo development. New Phytologist, 2020, 226, 289-291.	7.3	1
3	Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cellular and Molecular Life Sciences, 2020, 77, 3991-4014.	5.4	23
4	SMALL ORGAN4 Is a Ribosome Biogenesis Factor Involved in 5.8S Ribosomal RNA Maturation. Plant Physiology, 2020, 184, 2022-2039.	4.8	10
5	Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Research, 2019, 47, e140-e140.	14.5	10
6	Arabidopsis RIBOSOMAL RNA PROCESSING7 Is Required for 18S rRNA Maturation. Plant Cell, 2018, 30, 2855-2872.	6.6	20
7	The Arabidopsis <i>phyB-9</i> Mutant Has a Second-Site Mutation in the <i>VENOSA4</i> Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth. Plant Physiology, 2018, 178, 3-6.	4.8	32
8	A Suppressor Screen for AGO1 Degradation by the Viral F-Box PO Protein Uncovers a Role for AGO DUF1785 in sRNA Duplex Unwinding. Plant Cell, 2018, 30, 1353-1374.	6.6	44
9	<i>INCURVATA11</i> and <i>CUPULIFORMIS2</i> Are Redundant Genes That Encode Epigenetic Machinery Components in Arabidopsis. Plant Cell, 2018, 30, 1596-1616.	6.6	20
10	The ANGULATA 7 gene encodes a DnaJâ€like zinc fingerâ€domain protein involved in chloroplast function and leaf development in Arabidopsis. Plant Journal, 2017, 89, 870-884.	5.7	25
11	Loss of function of Arabidopsis microRNA-machinery genes impairs fertility, and has effects on homologous recombination and meiotic chromatin dynamics. Scientific Reports, 2017, 7, 9280.	3.3	26
12	DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development (Cambridge), 2016, 143, 1623-31.	2.5	25
13	ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2768-2773.	7.1	37
14	Arabidopsis MAS2, an Essential Gene That Encodes a Homolog of Animal NF-κ B Activating Protein, Is Involved in 45S Ribosomal DNA Silencing. Plant Cell, 2015, 27, 1999-2015.	6.6	11
15	Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses. Plant and Cell Physiology, 2015, 56, pcv132.	3.1	6
16	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
17	Multiâ€gene silencing in Arabidopsis: a collection of artificial micro <scp>RNA</scp> s targeting groups of paralogs encoding transcription factors. Plant Journal, 2014, 80, 149-160.	5.7	27
18	AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression. Annals of Botany, 2014, 114, 1471-1481.	2.9	23

#	Article	IF	CITATIONS
19	Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant Journal, 2014, 79, 878-891.	5.7	46
20	A genetic screen for suppressors of a hypomorphic allele of Arabidopsis ARGONAUTE1. Scientific Reports, 2014, 4, 5533.	3.3	7
21	<i>incurvata13</i> , a Novel Allele of <i>AUXIN RESISTANT6</i> , Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness Â. Plant Physiology, 2013, 161, 1303-1320.	4.8	28
22	Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family Â. Plant Physiology, 2013, 162, 589-603.	4.8	50
23	Mutation of an Arabidopsis NatB N-Alpha-Terminal Acetylation Complex Component Causes Pleiotropic Developmental Defects. PLoS ONE, 2013, 8, e80697.	2.5	42
24	PORPHOBILINOGEN DEAMINASE Deficiency Alters Vegetative and Reproductive Development and Causes Lesions in Arabidopsis. PLoS ONE, 2013, 8, e53378.	2.5	35
25	Arabidopsis TRANSCURVATA1 Encodes NUP58, a Component of the Nucleopore Central Channel. PLoS ONE, 2013, 8, e67661.	2.5	20
26	The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 2012, 53, 1322-1333.	3.1	35
27	Cell Expansion-Mediated Organ Growth Is Affected by Mutations in Three EXIGUA Genes. PLoS ONE, 2012, 7, e36500.	2.5	28
28	Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of <i>Arabidopsis</i> mutants. Plant, Cell and Environment, 2011, 34, 2200-2211.	5.7	36
29	Differential contributions of ribosomal protein genes to <i>Arabidopsis thaliana</i> leaf development. Plant Journal, 2011, 65, 724-736.	5.7	147
30	Arabidopsis <i>RUGOSA2</i> encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. Plant Journal, 2011, 68, 738-753.	5.7	79
31	Analysis of <i>ven3</i> and <i>ven6</i> reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. Plant Journal, 2011, 65, 335-345.	5.7	64
32	The <i>RON1/FRY1/SAL1</i> Gene Is Required for Leaf Morphogenesis and Venation Patterning in Arabidopsis. Plant Physiology, 2010, 152, 1357-1372.	4.8	91
33	The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. Physiologia Plantarum, 2010, 138, 91-101.	5.2	15
34	Lessons from a search for leaf mutants in Arabidopsis thaliana. International Journal of Developmental Biology, 2009, 53, 1623-1634.	0.6	36
35	Coordination of cell proliferation and cell expansion mediated by ribosomeâ€related processes in the leaves of <i>Arabidopsis thaliana</i> . Plant Journal, 2009, 59, 499-508.	5.7	162
36	The <i>ABA1</i> gene and carotenoid biosynthesis are required for late skotomorphogenic growth in <i>Arabidopsis thaliana</i> . Plant, Cell and Environment, 2008, 31, 227-234.	5.7	37

#	Article	IF	CITATIONS
37	Role ofHEMIVENATAand the Ubiquitin Pathway in Venation Pattern Formation. Plant Signaling and Behavior, 2007, 2, 258-259.	2.4	5
38	Visualization of Gene Expression by Fluorescent Multiplex Reverse Transcriptase-PCR Amplification. , 2007, 353, 143-152.		0
39	<i>INCURVATA2</i> Encodes the Catalytic Subunit of DNA Polymerase α and Interacts with Genes Involved in Chromatin-Mediated Cellular Memory in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2822-2838.	6.6	131
40	The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448, 666-671.	27.8	1,974
41	Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, Cell and Environment, 2006, 29, 2000-2008.	5.7	203
42	Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. Journal of Experimental Botany, 2006, 57, 3019-3031.	4.8	52
43	The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis. Development (Cambridge), 2006, 133, 3755-3766.	2.5	58
44	Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis. Plant Physiology, 2006, 141, 607-619.	4.8	88
45	Plant microRNAs and development. International Journal of Developmental Biology, 2005, 49, 733-744.	0.6	60
46	A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany, 2005, 56, 2071-2083.	4.8	208
47	The ULTRACURVATA2 Gene of Arabidopsis Encodes an FK506-Binding Protein Involved in Auxin and Brassinosteroid Signaling. Plant Physiology, 2004, 134, 101-117.	4.8	112
48	The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. Journal of Experimental Botany, 2004, 55, 1529-1539.	4.8	82
49	The Short-Chain Alcohol Dehydrogenase ABA2 Catalyzes the Conversion of Xanthoxin to Abscisic Aldehyde[W]. Plant Cell, 2002, 14, 1833-1846.	6.6	435
50	Genetic Architecture of NaCl Tolerance in Arabidopsis. Plant Physiology, 2002, 130, 951-963.	4.8	143
51	The UCU1 Arabidopsis Gene Encodes a SHAGGY/GSK3-like Kinase Required for Cell Expansion along the Proximodistal Axis. Developmental Biology, 2002, 242, 161-173.	2.0	174
52	A multiplex reverse transcriptase-polymerase chain reaction method for fluorescence-based semiautomated detection of gene expression in Arabidopsis thaliana. Planta, 2000, 211, 606-608.	3.2	12
53	Genetic Analysis of Salt-Tolerant Mutants in Arabidopsis thaliana. Genetics, 2000, 154, 421-436.	2.9	158
54	Genetic Analysis of incurvata Mutants Reveals Three Independent Genetic Operations at Work in Arabidopsis Leaf Morphogenesis. Genetics, 2000, 156, 1363-1377.	2.9	91

#	Article	IF	CITATIONS
55	Molecular characterization and phylogenetic analysis of SpBMP5-7, a new member of the TGF-beta superfamily expressed in sea urchin embryos. Molecular Biology and Evolution, 1999, 16, 634-645.	8.9	23
56	Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Molecular Genetics and Genomics, 1999, 261, 725-739.	2.4	92
57	High-throughput genetic mapping in Arabidopsis thaliana. Molecular Genetics and Genomics, 1999, 261, 408-415.	2.4	90
58	OTCandAUL1, two convergent and overlapping genes in the nuclear genome ofArabidopsis thaliana. FEBS Letters, 1999, 461, 101-106.	2.8	52
59	Rapid discrimination of sequences flanking and within T-DNA insertions in theArabidopsisgenome. Plant Journal, 1998, 14, 497-501.	5.7	77
60	Two computer programs for the generation of problems in transmission genetics for teaching purposes. Bioinformatics, 1992, 8, 603-604.	4.1	1
61	PCR amplification of long DNA fragments. Nucleic Acids Research, 1992, 20, 623-623.	14.5	117