
Fred G Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7548918/publications.pdf Version: 2024-02-01

FRED C ROSE

#	Article	IF	CITATIONS
1	Toward a more realistic representation of surface albedo in NASA CERES-derived surface radiative fluxes. Elementa, 2022, 10, .	3.2	7
2	Regional Energy and Water Budget of a Precipitating Atmosphere over Ocean. Journal of Climate, 2021, 34, 4189-4205.	3.2	6
3	Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate. Geophysical Research Letters, 2021, 48, e2021GL093047.	4.0	93
4	Evaluation of Regional Surface Energy Budget Over Ocean Derived From Satellites. Frontiers in Marine Science, 2021, 8, .	2.5	2
5	Toward a Consistent Definition between Satellite and Model Clear-Sky Radiative Fluxes. Journal of Climate, 2020, 33, 61-75.	3.2	22
6	Examining Biases in Diurnally Integrated Shortwave Irradiances due to Two- and Four-Stream Approximations in a Cloudy Atmosphere. Journals of the Atmospheric Sciences, 2020, 77, 551-581.	1.7	3
7	Uncertainty in Satellite-Derived Surface Irradiances and Challenges in Producing Surface Radiation Budget Climate Data Record. Remote Sensing, 2020, 12, 1950.	4.0	5
8	Effects of electromagnetic wave interference on observations of the Earth radiation budget. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107157.	2.3	2
9	Global and Regional Entropy Production by Radiation Estimated from Satellite Observations. Journal of Climate, 2020, 33, 2985-3000.	3.2	8
10	An Algorithm to Derive Temperature and Humidity Profile Changes Using Spatially and Temporally Averaged Spectral Radiance Differences. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1173-1187.	1.3	0
11	Decomposing Shortwave Top-of-Atmosphere and Surface Radiative Flux Variations in Terms of Surface and Atmospheric Contributions. Journal of Climate, 2019, 32, 5003-5019.	3.2	12
12	Impacts of Partly Cloudy Pixels on Shortwave Broadband Irradiance Computations. Journal of Atmospheric and Oceanic Technology, 2019, 36, 369-386.	1.3	4
13	Radiative Heating Rates Computed With Clouds Derived From Satelliteâ€Based Passive and Active Sensors and their Effects on Generation of Available Potential Energy. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1720-1740.	3.3	15
14	Surface Irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. Journal of Climate, 2018, 31, 4501-4527.	3.2	275
15	Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. Journal of Climate, 2018, 31, 895-918.	3.2	514
16	Determining the Shortwave Radiative Flux From Earth Polychromatic Imaging Camera. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,479.	3.3	20
17	Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels. Journal of Climate, 2018, 31, 10039-10058.	3.2	16
18	Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations. Journal of Climate, 2018, 31, 1851-1864.	3.2	36

Fred G Rose

#	Article	IF	CITATIONS
19	Surface energy budget changes over Central Australia during the early 21st century drought. International Journal of Climatology, 2017, 37, 159-168.	3.5	5
20	Examining impacts of massâ€diameter (mâ€D) and areaâ€diameter (Aâ€D) relationships of ice particles on retrievals of effective radius and ice water content from radar and lidar measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3396-3420.	3.3	6
21	Cloud occurrences and cloud radiative effects (CREs) from CERESâ€CALIPSOâ€CloudSatâ€MODIS (CCCM) and CloudSat radarâ€lidar (RL) products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8852-8884.	3.3	24
22	Evaluation of a General Circulation Model by the CERES Fluxâ€byâ€Cloud Type Simulator. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10655-10668.	3.3	5
23	A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,175-10,198.	3.3	14
24	Investigation of the Residual in Column-Integrated Atmospheric Energy Balance Using Cloud Objects. Journal of Climate, 2016, 29, 7435-7452.	3.2	13
25	Correction of ocean hemispherical spectral reflectivity for longwave irradiance computations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 171, 57-65.	2.3	1
26	Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research. Journal of the Meteorological Society of Japan, 2015, 93, 597-612.	1.8	11
27	Improving the modelling of shortâ€wave radiation through the use of a 3D scene construction algorithm. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1870-1883.	2.7	13
28	CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux. Journal of Atmospheric and Oceanic Technology, 2015, 32, 1121-1143.	1.3	200
29	Unfiltering Earth Radiation Budget Experiment (ERBE) Scanner Radiances Using the CERES Algorithm and Its Evaluation with Nonscanner Observations. Journal of Atmospheric and Oceanic Technology, 2014, 31, 843-859.	1.3	4
30	Retrieval of Atmospheric and Cloud Property Anomalies and Their Trend from Temporally and Spatially Averaged Infrared Spectra Observed from Space. Journal of Climate, 2014, 27, 4403-4420.	3.2	7
31	Effects of 3â€D clouds on atmospheric transmission of solar radiation: Cloud type dependencies inferred from Aâ€train satellite data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 943-963.	3.3	23
32	Global allâ€sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 655-669.	3.3	43
33	Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data. Geophysical Research Letters, 2013, 40, 595-600.	4.0	26
34	Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances. Journal of Climate, 2013, 26, 2719-2740.	3.2	363
35	Achieving Climate Change Absolute Accuracy in Orbit. Bulletin of the American Meteorological Society, 2013, 94, 1519-1539.	3.3	239
36	An Algorithm for the Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-Atmosphere Irradiance. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1091-1106.	1.3	41

Fred G Rose

#	Article	IF	CITATIONS
37	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	4.9	94
38	Radiative forcing due to enhancements in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 2008. Journal of Geophysical Research, 2012, 117, .	3.3	17
39	The Continual Intercomparison of Radiation Codes: Results from Phase I. Journal of Geophysical Research, 2012, 117, .	3.3	112
40	Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations. Surveys in Geophysics, 2012, 33, 359-385.	4.6	117
41	Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties. Surveys in Geophysics, 2012, 33, 395-412.	4.6	68
42	Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations. Space Sciences Series of ISSI, 2012, , 27-53.	0.0	2
43	Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties. Space Sciences Series of ISSI, 2012, , 63-80.	0.0	0
44	Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. Journal of Geophysical Research, 2011, 116, .	3.3	208
45	Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared Spectra Observed from Space. Journal of Climate, 2011, 24, 6392-6407.	3.2	19
46	Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. Journal of Geophysical Research, 2010, 115, .	3.3	134
47	Development and assessment of broadband surface albedo from Clouds and the Earth's Radiant Energy System Clouds and Radiation Swath data product. Journal of Geophysical Research, 2009, 114, .	3.3	75
48	Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit. Journal of Geophysical Research, 2008, 113, .	3.3	14
49	Cloud Effects on the Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data. Journal of Climate, 2008, 21, 4223-4241.	3.2	26
50	Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophysical Research Letters, 2007, 34, .	4.0	38
51	Photosynthetically active radiation from Clouds and the Earth's Radiant Energy System (CERES) products. Journal of Geophysical Research, 2007, 112, .	3.3	32
52	Real-time mesoscale forecast support during the CLAMS field campaign. Advances in Atmospheric Sciences, 2007, 24, 599-605.	4.3	0
53	Radiative Transfer Modeling for the CLAMS Experiment. Journals of the Atmospheric Sciences, 2005, 62, 1053-1071.	1.7	17
54	Computation of Domain-Averaged Irradiance Using Satellite-Derived Cloud Properties. Journal of Atmospheric and Oceanic Technology, 2005, 22, 146-164.	1.3	71

#	Article	IF	CITATIONS
55	Deriving surface ultraviolet radiation from CERES surface and atmospheric radiation budget: Methodology. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	28
56	ACCOUNTING FOR MOLECULAR ABSORPTION WITHIN THE SPECTRAL RANGE OF THE CERES WINDOW CHANNEL. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 61, 83-95.	2.3	61