
Gerald Schwank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7548034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. Gastroenterology, 2022, 162, 269-284.	1.3	24
2	Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label therapy. Cell Genomics, 2022, 2, 100095.	6.5	26
3	In vivo prime editing of a metabolic liver disease in mice. Science Translational Medicine, 2022, 14, eabl9238.	12.4	71
4	Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing. Nature Communications, 2022, 13, 1804.	12.8	26
5	InÂvivo targeting of a variant causing vanishing white matter using CRISPR/Cas9. Molecular Therapy - Methods and Clinical Development, 2022, 25, 17-25.	4.1	2
6	CRISPR-Based Screening in Three-Dimensional Organoid Cultures to Identify TGF-β Pathway Regulators. Methods in Molecular Biology, 2022, 2488, 99-111.	0.9	2
7	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	22.5	62
8	Identification of HIF-dependent alternative splicing in gastrointestinal cancers and characterization of a long, coding isoform of SLC35A3. Genomics, 2021, 113, 515-529.	2.9	4
9	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
10	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications, 2021, 12, 3339.	12.8	16
11	Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nature Communications, 2021, 12, 5114.	12.8	36
12	Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Molecular Therapy - Nucleic Acids, 2021, 26, 502-510.	5.1	7
13	High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nature Biomedical Engineering, 2020, 4, 863-874.	22.5	231
14	Genome-Scale CRISPR Screening in Human Intestinal Organoids Identifies Drivers of TGF-β Resistance. Cell Stem Cell, 2020, 26, 431-440.e8.	11.1	103
15	Germâ€free and microbiotaâ€associated mice yield small intestinal epithelial organoids with equivalent and robust transcriptome/proteome expression phenotypes. Cellular Microbiology, 2020, 22, e13191.	2.1	26
16	State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Human Gene Therapy, 2019, 30, 1274-1283.	2.7	29
17	In vitro Generation of CRISPR-Cas9 Complexes with Covalently Bound Repair Templates for Genome Editing in Mammalian Cells. Bio-protocol, 2019, 9, .	0.4	13
18	Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nature Medicine, 2018, 24, 1519-1525.	30.7	301

GERALD SCHWANK

#	Article	lF	CITATIONS
19	Growth of Epithelial Organoids in a Defined Hydrogel. Advanced Materials, 2018, 30, e1801621.	21.0	200
20	Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies. Cell Reports, 2018, 24, 1363-1376.	6.4	288
21	Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. ELife, 2018, 7, .	6.0	127
22	Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538, 260-264.	27.8	759
23	CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids. Methods in Molecular Biology, 2016, 1422, 3-11.	0.9	31
24	Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 2016, 168, 15-21.	5.0	176
25	Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015, 521, 43-47.	27.8	853
26	Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ. Journal of Experimental Medicine, 2014, 211, 1393-1405.	8.5	225
27	Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell, 2013, 13, 653-658.	11.1	1,149
28	Generation of BAC Transgenic Epithelial Organoids. PLoS ONE, 2013, 8, e76871.	2.5	85
29	Comment on "Dynamics of Dpp Signaling and Proliferation Control― Science, 2012, 335, 401-401.	12.6	41
30	Antagonistic Growth Regulation by Dpp and Fat Drives Uniform Cell Proliferation. Developmental Cell, 2011, 20, 123-130.	7.0	69
31	Formation of the Long Range Dpp Morphogen Gradient. PLoS Biology, 2011, 9, e1001111.	5.6	75
32	Regulation of Organ Growth by Morphogen Gradients. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001669-a001669.	5.5	112
33	Growth regulation by Dpp: an essential role for Brinker and a non-essential role for graded signaling levels. Development (Cambridge), 2008, 135, 4003-4013.	2.5	102
34	Auxin Triggers Transient Local Signaling for Cell Specification in Arabidopsis Embryogenesis. Developmental Cell, 2006, 10, 265-270.	7.0	303