List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7547137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mediterranean extension and the Africa-Eurasia collision. Tectonics, 2000, 19, 1095-1106.	2.8	855
2	Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 2004, 23, n/a-n/a.	2.8	680
3	History of subduction and back-arc extension in the Central Mediterranean. Geophysical Journal International, 2001, 145, 809-820.	2.4	565
4	Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian Sea. Journal of Geophysical Research, 1998, 103, 12123-12160.	3.3	456
5	Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 2013, 597-598, 1-33.	2.2	419
6	Mantle dynamics in the Mediterranean. Reviews of Geophysics, 2014, 52, 283-332.	23.0	394
7	A benchmark comparison of spontaneous subduction models—Towards a free surface. Physics of the Earth and Planetary Interiors, 2008, 171, 198-223.	1.9	361
8	Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters, 2006, 242, 85-97.	4.4	331
9	Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Science Letters, 2008, 272, 1-7.	4.4	314
10	Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth and Planetary Science Letters, 2001, 187, 105-116.	4.4	256
11	Vertical GPS ground motion rates in the Euroâ€Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubiaâ€Eurasia plate boundary. Journal of Geophysical Research: Solid Earth, 2013, 118, 6003-6024.	3.4	249
12	The dynamics of back-arc extension: an experimental approach to the opening of the Tyrrhenian Sea. Geophysical Journal International, 1996, 126, 781-795.	2.4	222
13	Subduction-triggered magmatic pulses: A new class of plumes?. Earth and Planetary Science Letters, 2010, 299, 54-68.	4.4	211
14	Shaping mobile belts by small-scale convection. Nature, 2010, 465, 602-605.	27.8	208
15	Subduction and the depth of convection in the Mediterranean mantle. Journal of Geophysical Research, 2003, 108, .	3.3	204
16	From mantle to crust: Stretching the Mediterranean. Earth and Planetary Science Letters, 2009, 285, 198-209.	4.4	202
17	Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 2008, 27, .	2.8	189
18	Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	186

CLAUDIO FACCENNA

#	Article	IF	CITATIONS
19	Styles of backâ€arc extension in the Central Mediterranean. Terra Nova, 1997, 9, 126-130.	2.1	174
20	Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth and Planetary Science Letters, 2003, 216, 365-381.	4.4	170
21	Trench migration, net rotation and slab–mantle coupling. Earth and Planetary Science Letters, 2008, 271, 233-240.	4.4	164
22	Mantle conveyor beneath the Tethyan collisional belt. Earth and Planetary Science Letters, 2011, 310, 453-461.	4.4	163
23	Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature, 2011, 480, 83-86.	27.8	152
24	Dynamics of subduction and plate motion in laboratory experiments: Insights into the "plate tectonics―behavior of the Earth. Journal of Geophysical Research, 2005, 110, .	3.3	150
25	Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments. Journal of Geophysical Research, 2003, 108, .	3.3	148
26	Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: Relationship with compressional and extensional tectonics. Tectonophysics, 1997, 271, 107-122.	2.2	147
27	Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters, 2013, 375, 254-269.	4.4	147
28	TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 2007, 58, 1-118.	3.5	137
29	Three-dimensional instantaneous mantle flow induced by subduction. Geophysical Research Letters, 2006, 33, .	4.0	136
30	Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bulletin - Societie Geologique De France, 2008, 179, 525-550.	2.2	136
31	Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth and Planetary Science Letters, 2007, 256, 473-483.	4.4	133
32	Late Pleistocene depositional cycles of the Lapis Tiburtinus travertine (Tivoli, Central Italy): Possible influence of climate and fault activity. Global and Planetary Change, 2008, 63, 299-308.	3.5	133
33	Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 2008, 450, 34-50.	2.2	125
34	Role of lateral mantle flow in the evolution of subduction systems: insights from laboratory experiments. Geophysical Journal International, 2004, 157, 1393-1406.	2.4	120
35	Evolution of the Calabrian accretionary wedge (central Mediterranean). Tectonics, 2010, 29, n/a-n/a.	2.8	120
36	Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics, 2011, 30, .	2.8	120

#	Article	IF	CITATIONS
37	Alpine structural and metamorphic signature of the Sila Piccola Massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the Calabrian Arc. Tectonics, 2001, 20, 112-133.	2.8	119
38	Constraints on mantle circulation around the deforming Calabrian slab. Geophysical Research Letters, 2005, 32, .	4.0	114
39	Slab stiffness control of trench motion: Insights from numerical models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	111
40	Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments. Journal of Geophysical Research, 1999, 104, 2749-2766.	3.3	110
41	Subduction dynamics as revealed by trench migration. Tectonics, 2008, 27, .	2.8	108
42	Recent tectonic reorganization of the Nubia-Eurasia convergent boundary heading for the closure of the western Mediterranean. Bulletin - Societie Geologique De France, 2011, 182, 279-303.	2.2	108
43	Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth and Planetary Science Letters, 2011, 310, 21-32.	4.4	103
44	Contrasting styles of (U)HP rock exhumation along the Cenozoic Adriaâ€Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems, 2015, 16, 1786-1824.	2.5	102
45	Dynamical effects of subducting ridges: insights from 3-D laboratory models. Geophysical Journal International, 2005, 163, 1137-1150.	2.4	100
46	Tectonics and seismicity of the Tindari Fault System, southern Italy: Crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab. Tectonics, 2006, 25, n/a-n/a.	2.8	100
47	Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Science Reviews, 2013, 123, 35-52.	9.1	96
48	The Ionian and Alfeo–Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?. Tectonophysics, 2016, 675, 69-90.	2.2	93
49	Mountain building and mantle dynamics. Tectonics, 2013, 32, 80-93.	2.8	91
50	lsostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth and Planetary Science Letters, 2014, 407, 163-174.	4.4	91
51	Predicting trench and plate motion from the dynamics of a strong slab. Earth and Planetary Science Letters, 2007, 257, 29-36.	4.4	89
52	Syn- versus post-orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy). Tectonophysics, 1999, 304, 71-93.	2.2	87
53	The influence of pre-existing thrust faults on normal fault geometry in nature and in experiments. Journal of Structural Geology, 1995, 17, 1139-1149.	2.3	85
54	Initiation of the Andean orogeny by lower mantle subduction. Earth and Planetary Science Letters, 2017, 463, 189-201.	4.4	84

#	Article	IF	CITATIONS
55	On the cause of the 1908 Messina tsunami, southern Italy. Geophysical Research Letters, 2008, 35, .	4.0	82
56	Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions. Earth-Science Reviews, 2019, 190, 589-604.	9.1	82
57	The two-stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Canadian Journal of Earth Sciences, 2016, 53, 1142-1157.	1.3	80
58	How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models. Geology, 2014, 42, 511-514.	4.4	77
59	Extensional tectonics on Sardinia (Italy): insights into the arc–back-arc transitional regime. Tectonophysics, 2002, 356, 213-232.	2.2	76
60	Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. Journal of Structural Geology, 2007, 29, 385-395.	2.3	75
61	Mantle structure and dynamic topography in the Mediterranean Basin. Geophysical Research Letters, 2010, 37, .	4.0	75
62	Earthquake focal mechanisms, seismogenic stress, and seismotectonics of the Calabrian Arc, Italy. Tectonophysics, 2013, 602, 153-175.	2.2	75
63	The role of transfer structures on volcanic activity at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 1999, 91, 123-139.	2.1	72
64	Mantle Flow and Deforming Continents: From Indiaâ€Asia Convergence to Pacific Subduction. Tectonics, 2018, 37, 2887-2914.	2.8	72
65	What drives tectonic plates?. Science Advances, 2019, 5, eaax4295.	10.3	71
66	Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth and Planetary Science Letters, 2012, 317-318, 126-135.	4.4	70
67	The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 2014, 206, 37-57.	2.6	69
68	Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics, 2010, 496, 83-98.	2.2	68
69	Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic ¹⁰ Be erosion rates and river longitudinal profile analysis. Tectonics, 2012, 31, .	2.8	66
70	Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of central Italy. Journal of Structural Geology, 1994, 16, 1243-1257.	2.3	65
71	Role of lateral thickness variations on the development of oblique structures at the Western end of the South Pyrenean Central Unit. Tectonophysics, 2002, 350, 215-235.	2.2	65
72	From subduction to collision: Control of deep processes on the evolution of convergent plate boundary. Journal of Geophysical Research, 2003, 108, .	3.3	63

#	Article	IF	CITATIONS
73	Seismotectonics of the Nubia plate compressive margin in the south Tyrrhenian region, Italy: Clues for subduction inception. Journal of Geophysical Research, 2007, 112, .	3.3	63
74	Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab. Geology, 2010, 38, 819-822.	4.4	63
75	On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophysical Research Letters, 2012, 39, .	4.0	62
76	Delamination vs. breakâ€off: the fate of continental collision. Geophysical Research Letters, 2013, 40, 285-289.	4.0	61
77	Static and dynamic support of western United States topography. Earth and Planetary Science Letters, 2014, 402, 234-246.	4.4	61
78	Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling. Tectonophysics, 2013, 588, 39-55.	2.2	60
79	Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs. Annual Review of Earth and Planetary Sciences, 2018, 46, 261-289.	11.0	60
80	New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. Journal of Geophysical Research: Solid Earth, 2016, 121, 5389-5424.	3.4	57
81	Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands. Geomorphology, 2016, 261, 12-29.	2.6	57
82	Tertiary compressional deformation of the Iberian plate. Terra Nova, 2001, 13, 281-288.	2.1	56
83	How deep can we find the traces of Alpine subduction?. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	56
84	The origin and growth of a recently-active fissure ridge travertine over a seismic fault, Tivoli, Italy. Geomorphology, 2013, 195, 13-26.	2.6	56
85	Neo-Tethys geodynamics and mantle convection: from extension to compression in Africa and a conceptual model for obduction. Canadian Journal of Earth Sciences, 2016, 53, 1190-1204.	1.3	56
86	Recent extension driven by mantle upwelling beneath the Admiralty Mountains (East Antarctica). Tectonics, 2008, 27, .	2.8	54
87	Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. Tectonophysics, 2018, 746, 229-238.	2.2	54
88	Subduction system and flat slab beneath the <scp>E</scp> astern <scp>C</scp> ordillera of <scp>C</scp> olombia. Geochemistry, Geophysics, Geosystems, 2016, 17, 16-27.	2.5	53
89	Numerical models of slab migration in continental collision zones. Solid Earth, 2012, 3, 293-306.	2.8	51
90	Long-term, deep-mantle support of the Ethiopia-Yemen Plateau. Tectonics, 2016, 35, 469-488.	2.8	49

#	Article	IF	CITATIONS
91	Slab pull and indentation tectonics: insights from 3D laboratory experiments. Physics of the Earth and Planetary Interiors, 2005, 149, 99-113.	1.9	48
92	The opening of Sirte basin: Result of slab avalanching?. Earth and Planetary Science Letters, 2009, 285, 210-216.	4.4	48
93	Incipient extension along the active convergent margin of Nubia in Sicily, Italy: Cefalù-Etna seismic zone. Tectonics, 2010, 29, n/a-n/a.	2.8	48
94	Isostasy, flexure, and dynamic topography. Tectonophysics, 2016, 683, 255-271.	2.2	48
95	Role of dynamic topography in sustaining the Nile River over 30 million years. Nature Geoscience, 2019, 12, 1012-1017.	12.9	48
96	The surface tectonics of mantle lithosphere delamination following ocean lithosphere subduction: Insights from physicalâ€scaled analogue experiments. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	45
97	Evolution of a transferâ€related basin: the Ardea basin (Latium, central Italy). Basin Research, 1994, 6, 35-46.	2.7	44
98	Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction. Tectonics, 2017, 36, 2599-2629.	2.8	44
99	Control of seafloor aging on the migration of the Izu–Bonin–Mariana trench. Earth and Planetary Science Letters, 2009, 288, 386-398.	4.4	41
100	Western US intermountain seismicity caused by changes in upper mantle flow. Nature, 2015, 524, 458-461.	27.8	41
101	Subduction zone interaction: Controls on arcuate belts. Geology, 2016, 44, 715-718.	4.4	41
102	Rheological properties of paraffin as an analogue material for viscous crustal deformation. Journal of Structural Geology, 1999, 21, 413-417.	2.3	40
103	Laboratory experiments of slab breakâ€off and slab dip reversal: insight into the Alpine Oligocene reorganization. Terra Nova, 2008, 20, 267-273.	2.1	40
104	Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin. Earth and Planetary Science Letters, 2008, 271, 303-310.	4.4	40
105	Subduction induced mantle flow: Length-scales and orientation of the toroidal cell. Earth and Planetary Science Letters, 2017, 479, 284-297.	4.4	40
106	Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth and Planetary Science Letters, 2018, 489, 72-83.	4.4	40
107	Episodic slab rollback fosters exhumation of HPĩ¿½ĩ;½ĩ;½UHP rocks. Geophysical Journal International, 2009, 179, 1292-1300.	2.4	39
108	Postcollisional lithospheric evolution of the Southeast Carpathians: Comparison of geodynamical models and observations. Tectonics, 2016, 35, 1205-1224.	2.8	39

#	Article	IF	CITATIONS
109	A Review of the Role of Subduction Dynamics for Regional and Global Plate Motions. Frontiers in Earth Sciences, 2009, , 3-34.	0.1	39
110	Unraveling topography around subduction zones from laboratory models. Tectonophysics, 2012, 526-529, 5-15.	2.2	38
111	Role of the overriding plate in the subduction process: Insights from numerical models. Tectonophysics, 2010, 484, 74-86.	2.2	36
112	On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: Comparison with the eastern Tibetan margin. Journal of Geodynamics, 2016, 100, 184-197.	1.6	36
113	Extensional crustal tectonics and crust-mantle coupling, a view from the geological record. Earth-Science Reviews, 2018, 185, 1187-1209.	9.1	36
114	Continental delamination: Insights from laboratory models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	35
115	Obduction: Why, how and where. Clues from analog models. Earth and Planetary Science Letters, 2014, 393, 132-145.	4.4	34
116	Asian collisional subduction: A key process driving formation of the Tibetan Plateau. Geology, 2016, 44, 943-946.	4.4	34
117	A late Cretaceous contamination episode of the European–Mediterranean mantle. Earth and Planetary Science Letters, 2008, 268, 15-27.	4.4	33
118	The dynamics of laterally variable subductions: laboratory models applied to the Hellenides. Solid Earth, 2013, 4, 179-200.	2.8	33
119	Topographic expressions of mantle dynamics in the Mediterranean. Earth-Science Reviews, 2020, 209, 103327.	9.1	33
120	Tectonic Evolution of the Western High Atlas of Morocco: Oblique Convergence, Reactivation, and Transpression. Tectonics, 2020, 39, e2019TC005563.	2.8	33
121	Neogene tectonic evolution of the Gibraltar Arc: New paleomagnetic constrains from the Betic chain. Earth and Planetary Science Letters, 2006, 250, 522-540.	4.4	32
122	Plio-Quaternary uplift of the Iberian Chain (central–eastern Spain) from landscape evolution experiments and river profile modeling. Geomorphology, 2015, 246, 48-67.	2.6	31
123	Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 2019, 512, 100-110.	4.4	31
124	Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. , 2007, , .		29
125	Subduction and exhumation of continental crust: insights from laboratory models. Geophysical Journal International, 2011, 184, 43-64.	2.4	29
126	Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos, 2017, 282-283, 145-162.	1.4	28

#	Article	IF	CITATIONS
127	The longâ€ŧerm evolution of the Doruneh Fault region (Central Iran): A key to understanding the spatioâ€ŧemporal tectonic evolution in the hinterland of the Zagros convergence zone. Geological Journal, 2019, 54, 1454-1479.	1.3	28
128	On the relation between trench migration, seafloor age, and the strength of the subducting lithosphere. Lithosphere, 2009, 1, 121-128.	1.4	27
129	The role of slabs and oceanic plate geometry in the net rotation of the lithosphere, trench motions, and slab return flow. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	26
130	Subduction Zones Interaction Around the Adria Microplate and the Origin of the Apenninic Arc. Tectonics, 2018, 37, 3941-3953.	2.8	25
131	The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. Geological Society Special Publication, 1999, 164, 21-53.	1.3	24
132	Paleomagnetic evidence for no tectonic rotation of the central Italy Tyrrhenian Margin since Upper Pliocene. Geophysical Research Letters, 1994, 21, 481-484.	4.0	23
133	Exhumation and Surface Evolution of the Western High Atlas and Surrounding Regions as Constrained by Lowâ€Temperature Thermochronology. Tectonics, 2020, 39, e2019TC005562.	2.8	23
134	Magnetic and structural constraints for the noncylindrical evolution of a continental forebulge (Hyblea, Italy). Tectonics, 2006, 25, n/a-n/a.	2.8	22
135	Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and nonrotational reactivation of a Mesozoic intracontinental rift. Tectonics, 2014, 33, 2233-2260.	2.8	22
136	Geomorphic signal of active faulting at the northern edge of Lut Block: Insights on the kinematic scenario of Central Iran. Tectonics, 2016, 35, 76-102.	2.8	22
137	Deep Structure of Northern Apennines Subduction Orogen (Italy) as Revealed by a Joint Interpretation of Passive and Active Seismic Data. Geophysical Research Letters, 2018, 45, 4017-4024.	4.0	22
138	Slab Detachment, Mantle Flow, and Crustal Collision in Eastern Sicily (Southern Italy): Implications on Mount Etna Volcanism. Tectonics, 2020, 39, e2020TC006188.	2.8	21
139	Mountain building, mantle convection, and supercontinents: revisited. Earth and Planetary Science Letters, 2021, 564, 116905.	4.4	20
140	Modeling Slabâ€Slab Interactions: Dynamics of Outward Dipping Doubleâ€Sided Subduction Systems. Geochemistry, Geophysics, Geosystems, 2018, 19, 693-714.	2.5	18
141	Magnetic stratigraphy of the Bucaramanga alluvial fan: Evidence for a â‰ g Âmm/yr slip rate for the Bucaramanga-Santa Marta Fault, Colombia. Journal of South American Earth Sciences, 2015, 57, 12-22.	1.4	17
142	Constraints on the Cenozoic Deformation of the Northern Eastern Cordillera, Colombia. Tectonics, 2018, 37, 4311-4337.	2.8	17
143	Oblique subduction and mantle flow control on upper plate deformation: 3D geodynamic modeling. Earth and Planetary Science Letters, 2021, 569, 117056.	4.4	16
144	The effects of plate interface rheology on subduction kinematics and dynamics. Geophysical Journal International, 2022, 230, 796-812.	2.4	16

9

#	Article	IF	CITATIONS
145	Recent tectonics of Tripolitania, Libya: an intraplate record of Mediterranean subduction. Geological Society Special Publication, 2011, 357, 319-328.	1.3	15
146	Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 2018, 30, 502-521.	2.7	15
147	The Gediz Supradetachment System (SW Turkey): Magmatism, Tectonics, and Sedimentation During Crustal Extension. Tectonics, 2019, 38, 1414-1440.	2.8	15
148	Dynamics of the Gibraltar Arc System: A Complex Interaction Between Plate Convergence, Slab Pull, and Mantle Flow. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018873.	3.4	15
149	Slab Folding and Surface Deformation of the Iran Mobile Belt. Tectonics, 2021, 40, e2020TC006300.	2.8	15
150	Dynamic interactions between subduction zones. Global and Planetary Change, 2021, 202, 103501.	3.5	14
151	Transpression and the build-up of the Cordillera: the example of the Bucaramanga fault (Eastern) Tj ETQq1 1 0.78	4314 rgBT 2.1	$ _{13}^{\rm Overlock} $
152	Opposite Subduction Polarity in Adjacent Plate Segments. Tectonics, 2018, 37, 3285-3302.	2.8	12
153	Stable isotope evidence for rapid uplift of the central Apennines since the late Pliocene. Earth and Planetary Science Letters, 2020, 544, 116376.	4.4	12
154	The Role of Subduction Interface and Upper Plate Strength on Backâ€Arc Extension: Application to Mediterranean Backâ€Arc Basins. Tectonics, 2021, 40, e2021TC006795.	2.8	12
155	Mantle kinematics driving collisional subduction: Insights from analogue modeling. Earth and Planetary Science Letters, 2018, 502, 96-103.	4.4	11
156	Formation and Persistence of Extensional Internally Drained Basins: The Case of the Fucino Basin (Central Apennines, Italy). Tectonics, 2021, 40, e2020TC006442.	2.8	10
157	The Dynamics of Forearc – Backâ€Arc Basin Subsidence: Numerical Models and Observations From Mediterranean Subduction Zones. Tectonics, 2022, 41, .	2.8	10
158	Topographic Fingerprint of Deep Mantle Subduction. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017962.	3.4	9
159	Effects of asthenospheric flow and orographic precipitation on continental rifting. Tectonophysics, 2021, 820, 229120.	2.2	9
160	Is the Anti-Atlas of Morocco still uplifting?. Journal of African Earth Sciences, 2022, 188, 104481.	2.0	9
161	Coupling surface and mantle dynamics: A novel experimental approach. Geophysical Research Letters, 2015, 42, 3863-3869.	4.0	8
162	Impact of the lithosphere on dynamic topography: Insights from analogue modeling. Geophysical Research Letters, 2017, 44, 2693-2702.	4.0	8

#	Article	IF	CITATIONS
163	Cretaceous and late Cenozoic uplift of a Variscan Massif: The case of the French Massif Central studied through low-temperature thermochronometry. Lithosphere, 2020, 12, 133-149.	1.4	8
164	Erosional response of granular material in landscape models. Earth Surface Dynamics, 2020, 8, 973-993.	2.4	8
165	The Role of Sediment Accretion and Buoyancy on Subduction Dynamics and Geometry. Geophysical Research Letters, 2021, 48, e2021GL096266.	4.0	8
166	Sediment Recycling and the Evolution of Analog Orogenic Wedges. Tectonics, 2022, 41, .	2.8	8
167	Interplays Between Mantle Flow and Slab Pull at Subduction Zones in 3D. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021574.	3.4	7
168	Tectonically driven drainage reorganization in the Eastern Cordillera, Colombia. Geomorphology, 2021, 389, 107847.	2.6	6
169	Arc and forearc rifting in the Tyrrhenian subduction system. Scientific Reports, 2022, 12, 4728.	3.3	6
170	Transition from slab roll-back to slab break-off in the central Apennines, Italy: Constraints from the stratigraphic and thermochronologic record. Bulletin of the Geological Society of America, 2022, 134, 1916-1930.	3.3	4
171	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	4.0	3
172	Wide Versus Narrow Backâ€Arc Rifting: Control of Subduction Velocity and Convective Backâ€Arc Thinning. Tectonics, 2022, 41, .	2.8	3
173	Drainage system organization after mantle plume impingement: The case of the Horn of Africa. Earth-Science Reviews, 2021, 216, 103582.	9.1	2
174	Thank You to Our 2018 Peer Reviewers. Geochemistry, Geophysics, Geosystems, 2019, 20, 4593-4598.	2.5	0
175	Thank You to Our 2019 Reviewers. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009007.	2.5	Ο
176	Thank You to Our 2020 Reviewers. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009697.	2.5	0
177	Thank You to Our 2021 Reviewers. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	0