Torsten Pietsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
2	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	16.8	933
3	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
4	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
5	<scp>I</scp> nternational <scp>S</scp> ociety of <scp>N</scp> europathologyâ€ <scp>H</scp> aarlem <scp>C</scp> onsensus <scp>G</scp> uidelines for <scp>N</scp> ervous <scp>S</scp> ystem <scp>T</scp> umor <scp>C</scp> lassification and <scp>G</scp> rading. Brain Pathology, 2014, 24, 429-435.	4.1	499
6	Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA–09): a randomised, open-label, phase 3 trial. Lancet, The, 2019, 393, 678-688.	13.7	384
7	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
8	cIMPACTâ€NOW update 6: new entity and diagnostic principle recommendations of the cIMPACTâ€Utrecht meeting on future CNS tumor classification and grading. Brain Pathology, 2020, 30, 844-856.	4.1	363
9	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	7.7	244
10	Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. Journal of Negative Results in BioMedicine, 2011, 10, 7.	1.4	239
11	Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro-Oncology, 2012, 14, 1265-1284.	1.2	213
12	Optimization of Quantitative MGMT Promoter Methylation Analysis Using Pyrosequencing and Combined Bisulfite Restriction Analysis. Journal of Molecular Diagnostics, 2007, 9, 368-381.	2.8	194
13	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	1.2	184
14	A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. European Journal of Cancer, 2015, 51, 522-532.	2.8	161
15	Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial. Cancer Cell, 2018, 33, 829-842.e5.	16.8	140
16	Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathologica, 2018, 136, 239-253.	7.7	118
17	A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (â‰≇6Âyears) low grade glioma– A final report. European Journal of Cancer, 2017, 81, 206-225.	2.8	104
18	Supratentorial ependymomas of childhood carry C11orf95–RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathologica, 2014, 127, 609-611.	7.7	103

#	Article	IF	CITATIONS
19	Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: A prospective observational multicentre study. European Journal of Cancer, 2013, 49, 893-903.	2.8	84
20	High frequency of H3F3A K27M mutations characterizes pediatric and adult high-grade gliomas of the spinal cord. Acta Neuropathologica, 2015, 130, 435-437.	7.7	83
21	Childhood supratentorial ependymomas with <i>YAP1â€MAMLD1</i> fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathology, 2019, 29, 205-216.	4.1	75
22	Supratentorial clear cell ependymomas with branching capillaries demonstrate characteristic clinicopathological features and pathological activation of nuclear factor-kappaB signaling. Neuro-Oncology, 2016, 18, 919-927.	1.2	68
23	Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: a retrospective, molecular analysis of the HIT-SIOP PNET 4 trial. Lancet Oncology, The, 2018, 19, 1602-1616.	10.7	67
24	H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications?. Journal of Neuro-Oncology, 2013, 112, 67-72.	2.9	65
25	DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro-Oncology, 2018, 20, 1616-1624.	1.2	65
26	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	1.6	58
27	Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-Oncology, 2018, 20, 400-410.	1.2	56
28	EANO–EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. Lancet Oncology, The, 2019, 20, e715-e728.	10.7	56
29	Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging. Brain Pathology, 2019, 29, 325-335.	4.1	55
30	Update on the integrated histopathological and genetic classification of medulloblastoma – a practical diagnostic guideline. , 2016, 35, 344-352.		54
31	SIOP-E-BTG and GPOH Guidelines for Diagnosis and Treatment of Children and Adolescents with Low Grade Glioma. Klinische Padiatrie, 2019, 231, 107-135.	0.6	52
32	Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget, 2015, 6, 38827-38839.	1.8	51
33	Spinal Cord Ependymomas With MYCN Amplification Show Aggressive Clinical Behavior. Journal of Neuropathology and Experimental Neurology, 2019, 78, 791-797.	1.7	50
34	HGNET-BCOR Tumors of the Cerebellum. American Journal of Surgical Pathology, 2017, 41, 1254-1260.	3.7	49
35	Impact of chemotherapy on disseminated lowâ€grade glioma in children and adolescents: Report from the HITâ€LGG 1996 trial. Pediatric Blood and Cancer, 2011, 56, 1046-1054.	1.5	47
36	Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathologica, 2021, 141, 455-466.	7.7	37

#	Article	IF	CITATIONS
37	Children <1 year show an inferior outcome when treated according to the traditional LGG treatment strategy: A report from the german multicenter trial HIT-LGG 1996 for children with low grade glioma (LGG). Pediatric Blood and Cancer, 2014, 61, 457-463.	1.5	36
38	Strategies to improve the quality of survival for childhood brain tumour survivors. European Journal of Paediatric Neurology, 2015, 19, 619-639.	1.6	36
39	High-Resolution Genomic Analysis Does Not Qualify Atypical Plexus Papilloma as a Separate Entity Among Choroid Plexus Tumors. Journal of Neuropathology and Experimental Neurology, 2015, 74, 110-120.	1.7	31
40	Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. EBioMedicine, 2020, 59, 102962.	6.1	31
41	CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathologica, 2020, 140, 405-407.	7.7	30
42	MRI Phenotype of RELA-fused Pediatric Supratentorial Ependymoma. Clinical Neuroradiology, 2019, 29, 595-604.	1.9	26
43	Prognostic and predictive value of PD-L2 DNA methylation and mRNA expression in melanoma. Clinical Epigenetics, 2020, 12, 94.	4.1	26
44	Pediatric ependymoma: an overview of a complex disease. Child's Nervous System, 2021, 37, 2451-2463.	1.1	26
45	Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro-Oncology, 2021, 23, 1885-1897.	1.2	23
46	CTLA4 promoter methylation predicts response and progression-free survival in stage IV melanoma treated with anti-CTLA-4 immunotherapy (ipilimumab). Cancer Immunology, Immunotherapy, 2021, 70, 1781-1788.	4.2	22
47	Improved risk-stratification for posterior fossa ependymoma of childhood considering clinical, histological and genetic features – a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathologica Communications, 2019, 7, 181.	5.2	21
48	Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers, 2019, 11, 858.	3.7	20
49	Newly Diagnosed Metastatic Intracranial Ependymoma in Children: Frequency, Molecular Characteristics, Treatment, and Outcome in the Prospective HIT Series. Oncologist, 2019, 24, e921-e929.	3.7	19
50	Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric lowâ€grade glioma patients—Report from the German <scp>SIOP‣GG</scp> 2004 cohort. International Journal of Cancer, 2020, 147, 3471-3489.	5.1	19
51	Local and systemic therapy of recurrent ependymoma in children and adolescents: short- and long-term results of the E-HIT-REZ 2005 study. Neuro-Oncology, 2021, 23, 1012-1023.	1.2	19
52	A Global View on the Availability of Methods and Information in the Neuropathological Diagnostics of CNS Tumors: Results of an International Survey Among Neuropathological Units. Brain Pathology, 2016, 26, 551-554.	4.1	16
53	Integrating Tenascin-C protein expression and 1q25 copy number status in pediatric intracranial ependymoma prognostication: A new model for risk stratification. PLoS ONE, 2017, 12, e0178351.	2.5	15
54	Early Wound Site Seeding in a Patient with Central Nervous System High-Grade Neuroepithelial Tumor with BCOR Alteration. World Neurosurgery, 2018, 116, 279-284.	1.3	14

#	Article	IF	CITATIONS
55	Bevacizumab versus alkylating chemotherapy in recurrent glioblastoma. Journal of Cancer Research and Clinical Oncology, 2020, 146, 659-670.	2.5	14
56	Ependymomas in infancy: underlying genetic alterations, histological features, and clinical outcome. Child's Nervous System, 2020, 36, 2693-2700.	1.1	14
57	Dysembryoplastic Neuroepithelial Tumor of the Septum Pellucidum and the Supratentorial Midline. American Journal of Surgical Pathology, 2016, 40, 806-811.	3.7	13
58	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	7.7	12
59	Case of the month 1-2019: CNS high-grade neuroepithelial tumor with BCOR alteration. , 2019, 38, 4-7.		11
60	<scp><i>MGMT</i></scp> promoter methylation analysis for allocating combined <scp>CCNU</scp> / <scp>TMZ</scp> chemotherapy: Lessons learned from the <scp>CeTeG</scp> / <scp>NOA</scp> â€09 trial. International Journal of Cancer, 2021, 148, 1695-1707.	5.1	11
61	Evaluation of dose, volume, and outcome in children with localized, intracranial ependymoma treated with proton therapy within the prospective KiProReg Study. Neuro-Oncology, 2022, 24, 1193-1202.	1.2	11
62	Telomerase reverse transcriptase promoter mutation– and O6-methylguanine DNA methyltransferase promoter methylation–mediated sensitivity to temozolomide in isocitrate dehydrogenase–wild-type glioblastoma: is there a link?. European Journal of Cancer, 2021, 147, 84-94.	2.8	10
63	Treatment of embryonal tumors with multilayered rosettes with carboplatin/etoposide induction and high-dose chemotherapy within the prospective P-HIT trial. Neuro-Oncology, 2022, 24, 127-137.	1.2	9
64	High frequency of disease progression in pediatric spinal cord low-grade glioma (LGG): management strategies and results from the German LGG study group. Neuro-Oncology, 2021, 23, 1148-1162.	1.2	9
65	Prognostic impact of distinct genetic entities in pediatric diffuse glioma <scp>WHO</scp> â€grade <scp>II</scp> —Report from the German/Swiss <scp>SIOP‣GG</scp> 2004 cohort. International Journal of Cancer, 2020, 147, 2159-2175.	5.1	8
66	Magnetic Resonance Imaging Characteristics of Molecular Subgroups in Pediatric H3ÂK27M Mutant Diffuse Midline Glioma. Clinical Neuroradiology, 2022, 32, 249-258.	1.9	8
67	Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status. Pharmaceuticals, 2021, 14, 195.	3.8	7
68	Medulloblastoma in Adults: Cytogenetic Phenotypes Identify Prognostic Subgroups. Journal of Neuropathology and Experimental Neurology, 2021, 80, 419-430.	1.7	7
69	Systemic chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ studies. Journal of Neuro-Oncology, 2021, 155, 193-202.	2.9	6
70	Medulloblastoma with extensive nodularity: a tumour exclusively of infancy?. Neuropathology and Applied Neurobiology, 2017, 43, 267-270.	3.2	5
71	No evidence to support the impact of migration background on treatment response rates and cancer survival: a retrospective matched-pair analysis in Germany. BMC Cancer, 2021, 21, 526.	2.6	3
72	Pediatric high-grade gliomas and the WHO CNS Tumor Classification—Perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates. Neuro-Oncology Advances, 2022, 4, .	0.7	3

#	Article	IF	CITATIONS
73	Transitioning to molecular diagnostics in pediatric high-grade glioma: experiences with the 2016 WHO classification of CNS tumors. Neuro-Oncology Advances, 2021, 3, vdab113.	0.7	2
74	Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies. Journal of Neuro-Oncology, 2022, 157, 37-48.	2.9	2
75	Chemotherapy for adult patients with spinal cord gliomas. Neuro-Oncology Practice, 2021, 8, 475-484.	1.6	1
76	ETMR-14. TREATMENT OF EMBRYONAL TUMOURS WITH MULTILAYERED ROSETTES (ETMR) WITH CARBOPLATIN-ETOPOSIDE INDUCTION AND TANDEM HIGH-DOSE CHEMOTHERAPY WITHIN THE PROSPECTIVE HIT-TRIALS AND REGISTRIES. Neuro-Oncology, 2020, 22, iii325-iii326.	1.2	1
77	EPEN-39. CLINICAL STRATIFIED TREATMENT OF LOCALIZED PEDIATRIC INTRACRANIAL EPENDYMOMA WITH COMBINED LOCAL IRRADIATION AND CHEMOTHERAPY WITHIN THE PROSPECTIVE, MULTICENTER E-HIT TRIAL – THE MOLECULAR SUBGROUP MATTERS. Neuro-Oncology, 2020, 22, iii315-iii316.	⁻ 1.2	1
78	Radiotherapy and olaptesed pegol (NOX-A12) in partially resected or biopsy-only MGMT-unmethylated glioblastoma: Interim data from the German multicenter phase 1/2 GLORIA trial Journal of Clinical Oncology, 2022, 40, 2050-2050.	1.6	1
79	EPEN-09. IMPACT OF MOLECULAR SUBGROUP ON OUTCOME FOR INFANTS <12 MONTHS WITH INTRACRANIAL EPENDYMOMA - GERMAN EXPERIENCE FROM HIT2000, INTERIM-2000-REGISTRY AND I-HIT-MED REGISTRY. Neuro-Oncology, 2020, 22, iii309-iii309.	1.2	0
80	QOL-13. NEUROCOGNITIVE OUTCOMES ACCORDING TO RISK-ADAPTED TREATMENT REGIMENS FOR CHILDREN OLDER THAN 4 WITH MEDULLOBLASTOMA AND POSTERIOR FOSSA EPENDYMOMA – RESULTS OF THE HIT2000 TRIAL. Neuro-Oncology, 2020, 22, iii433-iii433.	1.2	0
81	MBCL-09. ISOLATED M1 METASTASES IN PEDIATRIC MEDULLOBLASTOMA: IS POSTOPERATIVE RADIOTHERAPY FOLLOWED BY MAINTENANCE CHEMOTHERAPY SUPERIOR TO POSTOPERATIVE SANDWICH-CHEMOTHERAPY AND RADIOTHERAPY?. Neuro-Oncology, 2020, 22, iii389-iii389.	1.2	0
82	BIOM-08. DNA METHYLATION-BASED SUBGROUPING PREDICTS SURVIVAL BENEFIT FROM LOMUSTINE/TEMOZOLOMID COMBINATION THERAPY IN MGMT PROMOTOR-METHYLATED GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi11-vi11.	1.2	0
83	CTNI-43. CXCL12 INHIBITION IN MGMT UNMETHYLATED GLIOBLASTOMA – RESULTS OF AN EARLY PROOF-OF-CONCEPT ASSESSMENT IN THE MULTICENTRIC PHASE I/II GLORIA TRIAL (NCT04121455). Neuro-Oncology, 2021, 23, vi69-vi69.	1.2	0
84	Molecular pathological insights reveal a high number of unfavorable risk patients among children treated for medulloblastoma and CNSâ€PNET in Oslo 2005–2017. Pediatric Blood and Cancer, 2022, , e29736.	1.5	0
85	MEDB-51. Impact of residual tumor on outcomes in children and adolescents with medulloblastoma in the German HIT-cohort. Neuro-Oncology, 2022, 24, i118-i118.	1.2	0
86	MEDB-37. Chemotherapy response prediction by molecular risk factors in metastatic childhood medulloblastoma. Neuro-Oncology, 2022, 24, i113-i113.	1.2	0