
David Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7546232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11358-11363.	7.1	1,629
2	Quantifying community assembly processes and identifying features that impose them. ISME Journal, 2013, 7, 2069-2079.	9.8	1,354
3	Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica Et Cosmochimica Acta, 1998, 62, 3239-3257.	3.9	712
4	Bacterial reduction of crystalline Fe (super 3+) oxides in single phase suspensions and subsurface materials. American Mineralogist, 1998, 83, 1426-1443.	1.9	324
5	c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis. PLoS Biology, 2006, 4, e268.	5.6	310
6	Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica Et Cosmochimica Acta, 2000, 64, 3085-3098.	3.9	309
7	Dechlorination of Carbon Tetrachloride by Fe(II) Associated with Goethite. Environmental Science & Technology, 2000, 34, 4606-4613.	10.0	296
8	Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 2016, 7, 11237.	12.8	290
9	Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a <i>Thermus</i> Isolate. Applied and Environmental Microbiology, 1999, 65, 1214-1221.	3.1	260
10	Inhibition of Bacterial U(VI) Reduction by Calcium. Environmental Science & Technology, 2003, 37, 1850-1858.	10.0	254
11	Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State. Applied and Environmental Microbiology, 2004, 70, 4230-4241.	3.1	247
12	Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c -Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 2006, 188, 4705-4714.	2.2	227
13	Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochimica Et Cosmochimica Acta, 2009, 73, 962-976.	3.9	216
14	Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1. Frontiers in Microbiology, 2012, 3, 37.	3.5	186
15	Reduction of TcO4â^' by sediment-associated biogenic Fe(II). Geochimica Et Cosmochimica Acta, 2004, 68, 3171-3187.	3.9	184
16	Mineral transformations associated with the microbial reduction of magnetite. Chemical Geology, 2000, 169, 299-318.	3.3	180
17	A transâ€outer membrane porinâ€cytochrome protein complex for extracellular electron transfer by <scp><i>G</i></scp> <i>eobacter sulfurreducens</i> â€ <scp>PCA</scp> . Environmental Microbiology Reports, 2014, 6, 776-785.	2.4	178
18	Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochimica Et Cosmochimica Acta. 2002, 66, 3247-3262.	3.9	170

DAVID KENNEDY

#	Article	IF	CITATIONS
19	Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe(III)-reducing bacterium: formation of carbonate green rust in the presence of phosphate. Geochimica Et Cosmochimica Acta, 2004, 68, 2799-2814.	3.9	164
20	Contribution of Extracellular Polymeric Substances from <i>Shewanella</i> sp. HRCR-1 Biofilms to U(VI) Immobilization. Environmental Science & Technology, 2011, 45, 5483-5490.	10.0	149
21	Deterministic influences exceed dispersal effects on hydrologicallyâ€connected microbiomes. Environmental Microbiology, 2017, 19, 1552-1567.	3.8	143
22	Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2011, 77, 4035-4041.	3.1	140
23	Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4. Applied and Environmental Microbiology, 2006, 72, 3236-3244.	3.1	132
24	Microbial Reduction of Structural Fe(III) in Illite and Goethite. Environmental Science & Technology, 2003, 37, 1268-1276.	10.0	128
25	Direct Involvement of Type II Secretion System in Extracellular Translocation of <i>Shewanella oneidensis</i> Outer Membrane Cytochromes MtrC and OmcA. Journal of Bacteriology, 2008, 190, 5512-5516.	2.2	113
26	Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications, 2018, 9, 585.	12.8	110
27	Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environmental Microbiology, 2012, 14, 414-425.	3.8	100
28	Redox Reactions of Reduced Flavin Mononucleotide (FMN), Riboflavin (RBF), and Anthraquinone-2,6-disulfonate (AQDS) with Ferrihydrite and Lepidocrocite. Environmental Science & Technology, 2012, 46, 11644-11652.	10.0	98
29	Impacts of <i>Shewanella oneidensis c</i> â€ŧype cytochromes on aerobic and anaerobic respiration. Microbial Biotechnology, 2010, 3, 455-466.	4.2	91
30	Role of outerâ€membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by <i>Shewanella oneidensis</i> MRâ€1. Geobiology, 2010, 8, 56-68.	2.4	91
31	Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism. Frontiers in Microbiology, 2016, 7, 1949.	3.5	87
32	Ferrous hydroxy carbonate is a stable transformation product of biogenic magnetite. American Mineralogist, 2005, 90, 510-515.	1.9	75
33	Hydrogenase―and outer membrane <i>c</i> â€ŧype cytochromeâ€facilitated reduction of technetium(VII) by <i>Shewanella oneidensis</i> MRâ€1. Environmental Microbiology, 2008, 10, 125-136.	3.8	74
34	Modeling the Inhibition of the Bacterial Reduction of U(VI) by β-MnO2(s). Environmental Science & Technology, 2002, 36, 1452-1459.	10.0	67
35	Reductive biotransformation of Fe in shale–limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochimica Et Cosmochimica Acta, 2006, 70, 3662-3676.	3.9	67
36	Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 2018, 94, .	2.7	62

DAVID KENNEDY

#	Article	IF	CITATIONS
37	Multi 'omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Science of the Total Environment, 2018, 642, 742-753.	8.0	60
38	Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3188-3205.	3.0	58
39	Oxidative dissolution potential of biogenic and abiogenic TcO2 in subsurface sediments. Geochimica Et Cosmochimica Acta, 2009, 73, 2299-2313.	3.9	54
40	Structural Similarities between Biogenic Uraninites Produced by Phylogenetically and Metabolically Diverse Bacteria. Environmental Science & Technology, 2009, 43, 8295-8301.	10.0	50
41	Electron donorâ€dependent radionuclide reduction and nanoparticle formation by <i>Anaeromyxobacter dehalogenans</i> strain 2CP . Environmental Microbiology, 2009, 11, 534-543.	3.8	49
42	Competitive Reduction of Pertechnetate (⁹⁹ TcO ₄ ^{â^`}) by Dissimilatory Metal Reducing Bacteria and Biogenic Fe(II). Environmental Science & Technology, 2011, 45, 951-957.	10.0	48
43	Distribution of Microbial Biomass and Potential for Anaerobic Respiration in Hanford Site 300 Area Subsurface Sediment. Applied and Environmental Microbiology, 2012, 78, 759-767.	3.1	46
44	Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies. Scientific Reports, 2017, 7, 12006.	3.3	40
45	Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environmental Microbiology, 2011, 13, 3275-3288.	3.8	39
46	Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Frontiers in Microbiology, 2013, 4, 388.	3.5	38
47	Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Technology, 2012, 46, 3721-3730.	10.0	34
48	Identification and Characterization of UndA _{HRCR-6} , an Outer Membrane Endecaheme <i>c</i> -Type Cytochrome of Shewanella sp. Strain HRCR-6. Applied and Environmental Microbiology, 2011, 77, 5521-5523.	3.1	32
49	Nitrate bioreduction in redox-variable low permeability sediments. Science of the Total Environment, 2016, 539, 185-195.	8.0	32
50	Coupling among Microbial Communities, Biogeochemistry and Mineralogy across Biogeochemical Facies. Scientific Reports, 2016, 6, 30553.	3.3	26
51	Biogeochemical cycling at the aquatic–terrestrial interface is linked to parafluvial hyporheic zone inundation history. Biogeosciences, 2017, 14, 4229-4241.	3.3	25
52	The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression. Archives of Microbiology, 2008, 189, 313-324.	2.2	21
53	Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
54	Redox transformation and reductive immobilization of Cr(VI) in the Columbia River hyporheic zone sediments. Journal of Hydrology, 2017, 555, 278-287.	5.4	18

DAVID KENNEDY

#	Article	IF	CITATIONS
55	CaUO2CO3 Complexation Implications for Bioremediation of UVI. Physica Scripta, 2005, , 915.	2.5	15
56	The Role of Bacterial Exopolymers in Metal Sorption and Reduction. Microscopy and Microanalysis, 2005, 11, .	0.4	12
57	Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome. PLoS ONE, 2020, 15, e0228165.	2.5	12
58	Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer. Microbiology (United Kingdom), 2014, 160, 362-372.	1.8	10
59	Biogenic Mineral Formation by Iron Reducing Bacteria. Microscopy and Microanalysis, 2001, 7, 756-757.	0.4	3
60	TEM Approach in Investigations of Microbially Assisted Uranium Reduction. Microscopy and Microanalysis, 2002, 8, 750-751.	0.4	0