
Timothy J Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7545130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When "Deep Faking―Results Means "Improving Diagnosis― Radiology, 2022, , 212939.	7.3	ο
2	Engagement of the contralateral limb can enhance the facilitation of motor output by loud acoustic stimuli. Journal of Neurophysiology, 2022, 127, 840-855.	1.8	0
3	QSM in canine model of acute cerebral ischemia: A pilot study. Magnetic Resonance in Medicine, 2021, 85, 1602-1610.	3.0	4
4	The influence of temporal predictability on express visuomotor responses. Journal of Neurophysiology, 2021, 125, 731-747.	1.8	20
5	Plantar flexor voluntary activation capacity, strength and function in cerebral palsy. European Journal of Applied Physiology, 2021, 121, 1733-1741.	2.5	8
6	Cyclic eccentric stretching induces more damage and improved subsequent protection than stretched isometric contractions in the lower limb. European Journal of Applied Physiology, 2021, 121, 3349-3360.	2.5	3
7	Trial-by-trial modulation of express visuomotor responses induced by symbolic or barely detectable cues. Journal of Neurophysiology, 2021, 126, 1507-1523.	1.8	14
8	Rapid recalibration of temporal order judgements: Response bias accounts for contradictory results. European Journal of Neuroscience, 2020, 51, 1697-1710.	2.6	7
9	Task Feedback Processing Differs Between Young and Older Adults in Visuomotor Rotation Learning Despite Similar Initial Adaptation and Savings. Neuroscience, 2020, 451, 79-98.	2.3	9
10	Impact of Lower Limb Active Movement Training in Individuals With Spastic Type Cerebral Palsy on Neuromuscular Control Outcomes: A Systematic Review. Frontiers in Neurology, 2020, 11, 581892.	2.4	8
11	Task Errors Drive Memories That Improve Sensorimotor Adaptation. Journal of Neuroscience, 2020, 40, 3075-3088.	3.6	54
12	Using Dynamic Contrast-enhanced MRI as an Imaging Biomarker for Migraine: Proceed with Caution. Radiology, 2019, 292, 721-722.	7.3	4
13	Interlimb transfer and generalisation of learning in the context of persistent failure to accomplish a visuomotor task. Experimental Brain Research, 2019, 237, 1077-1092.	1.5	1
14	Rapid Visuomotor Responses Reflect Value-Based Decisions. Journal of Neuroscience, 2019, 39, 3906-3920.	3.6	45
15	Increased preparation time reduces, but does not abolish, action history bias of saccadic eye movements. Journal of Neurophysiology, 2019, 121, 1478-1490.	1.8	8
16	Motor Strategies Learned during Pain Are Sustained upon Pain-free Reexposure to Task. Medicine and Science in Sports and Exercise, 2019, 51, 2334-2343.	0.4	9
17	Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention. European Journal of Neuroscience, 2019, 49, 120-136.	2.6	3
18	It Pays to Prepare: Human Motor Preparation Depends on the Relative Value of Potential Response Options. Neuroscience, 2018, 374, 223-235.	2.3	2

#	Article	IF	CITATIONS
19	Useâ€dependent directional bias does not transfer to the untrained limb during bimanual contractions. European Journal of Neuroscience, 2018, 47, 33-39.	2.6	1
20	Task errors contribute to implicit aftereffects in sensorimotor adaptation. European Journal of Neuroscience, 2018, 48, 3397-3409.	2.6	66
21	Unilateral movement preparation causes taskâ€specific modulation of TMS responses in the passive, opposite limb. Journal of Physiology, 2018, 596, 3725-3738.	2.9	12
22	The repeated bout effect can occur without mechanical and neuromuscular changes after a bout of eccentric exercise. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 2123-2134.	2.9	18
23	Greater neural responses to trajectory errors are associated with superior force field adaptation in older adults. Experimental Gerontology, 2018, 110, 105-117.	2.8	23
24	Unexpected acoustic stimulation during action preparation reveals gradual re-specification of movement direction. Neuroscience, 2017, 348, 23-32.	2.3	20
25	Estimating the implicit component of visuomotor rotation learning by constraining movement preparation time. Journal of Neurophysiology, 2017, 118, 666-676.	1.8	68
26	Recovery of central and peripheral neuromuscular fatigue after exercise. Journal of Applied Physiology, 2017, 122, 1068-1076.	2.5	164
27	Distinct coordinate systems for adaptations of movement direction and extent. Journal of Neurophysiology, 2017, 118, 2670-2686.	1.8	11
28	Action history influences subsequent movement via two distinct processes. ELife, 2017, 6, .	6.0	37
29	Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation. PLoS ONE, 2017, 12, e0179977.	2.5	21
30	Neural Adaptations Associated with Interlimb Transfer in a Ballistic Wrist Flexion Task. Frontiers in Human Neuroscience, 2016, 10, 204.	2.0	17
31	Motor Adaptations to Pain during a Bilateral Plantarflexion Task: Does the Cost of Using the Non-Painful Limb Matter?. PLoS ONE, 2016, 11, e0154524.	2.5	8
32	Effect of coordinate frame compatibility on the transfer of implicit and explicit learning across limbs. Journal of Neurophysiology, 2016, 116, 1239-1249.	1.8	36
33	Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. Journal of Neurophysiology, 2016, 116, 575-586.	1.8	15
34	Savings for visuomotor adaptation require prior history of error, not prior repetition of successful actions. Journal of Neurophysiology, 2016, 116, 1603-1614.	1.8	48
35	Feedforward compensation for novel dynamics depends on force field orientation but is similar for the left and right arms. Journal of Neurophysiology, 2016, 116, 2260-2271.	1.8	14
36	Strength Training Biases Goal-Directed Aiming. Medicine and Science in Sports and Exercise, 2016, 48, 1835-1846.	0.4	14

#	Article	IF	CITATIONS
37	Protection from Muscle Damage in the Absence of Changes in Muscle Mechanical Behavior. Medicine and Science in Sports and Exercise, 2016, 48, 1495-1505.	0.4	14
38	Electric and acoustic stimulation during movement preparation can facilitate movement execution in healthy participants and stroke survivors. Neuroscience Letters, 2016, 618, 134-138.	2.1	26
39	Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs. Journal of Neurophysiology, 2016, 115, 445-456.	1.8	15
40	The facilitation of motor actions by acoustic and electric stimulation. Psychophysiology, 2015, 52, 1698-1710.	2.4	18
41	Contrast-Enhanced MR Angiography. , 2015, , 283-295.		Ο
42	Advances and Innovations in Brain Arteriovenous Malformation Surgery. Neurosurgery, 2014, 74, S60-S73.	1.1	60
43	RAZER: A pulse sequence for wholeâ€brain bolus tracking at high frame rates. Magnetic Resonance in Medicine, 2014, 71, 2127-2138.	3.0	6
44	New visuomotor maps are immediately available to the opposite limb. Journal of Neurophysiology, 2014, 111, 2232-2243.	1.8	27
45	Visual Spatial Attention Has Opposite Effects on Bidirectional Plasticity in the Human Motor Cortex. Journal of Neuroscience, 2014, 34, 1475-1480.	3.6	26
46	Muscle fascicle strains in human gastrocnemius during backward downhill walking. Journal of Applied Physiology, 2014, 116, 1455-1462.	2.5	29
47	Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Experimental Brain Research, 2013, 227, 19-29.	1.5	36
48	Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications. Journal of Neurophysiology, 2013, 109, 2963-2971.	1.8	13
49	Shortâ€interval intracortical inhibition in knee extensors during locomotor cycling. Acta Physiologica, 2013, 207, 194-201.	3.8	33
50	lpsilateral corticospinal responses to ballistic training are similar for various intensities and timings of <scp>TMS</scp> . Acta Physiologica, 2013, 207, 385-396.	3.8	14
51	Corticospinal Responses to Sustained Locomotor Exercises: Moving Beyond Single-Joint Studies of Central Fatigue. Sports Medicine, 2013, 43, 437-449.	6.5	54
52	Characterizing Changes in the Excitability of Corticospinal Projections to Proximal Muscles of the Upper Limb. Brain Stimulation, 2013, 6, 760-768.	1.6	60
53	Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis. Journal of Physiology, 2013, 591, 1373-1383.	2.9	32
54	Bilateral tremor responses to unilateral loading and fatiguing muscle contractions. Journal of Neurophysiology, 2013, 110, 431-440.	1.8	12

#	Article	IF	CITATIONS
55	Sustained Cycling Exercise Increases Intracortical Inhibition. Medicine and Science in Sports and Exercise, 2013, 45, 654-662.	0.4	34
56	Are muscle synergies useful for neural control?. Frontiers in Computational Neuroscience, 2013, 7, 19.	2.1	86
57	Safety of spinal angiography. Nature Reviews Neurology, 2012, 8, 10-11.	10.1	1
58	Visual Attentional Load Influences Plasticity in the Human Motor Cortex. Journal of Neuroscience, 2012, 32, 7001-7008.	3.6	60
59	A systematic method to quantify the presence of cross-talk in stimulus-evoked EMG responses: Implications for TMS studies. Journal of Applied Physiology, 2012, 112, 259-265.	2.5	34
60	A comparison of two Hill-type skeletal muscle models on the construction of medial gastrocnemius length-tension curves in humans in vivo. Journal of Applied Physiology, 2012, 113, 90-96.	2.5	24
61	Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion. Journal of Applied Physiology, 2012, 113, 401-409.	2.5	57
62	Corticospinal contributions to lower limb muscle activity during cycling in humans. Journal of Neurophysiology, 2012, 107, 306-314.	1.8	53
63	Changes in wrist muscle activity with forearm posture: implications for the study of sensorimotor transformations. Journal of Neurophysiology, 2012, 108, 2884-2895.	1.8	16
64	Virtual biomechanics: a new method for online reconstruction of force from EMG recordings. Journal of Neurophysiology, 2012, 108, 3333-3341.	1.8	14
65	Emerging evidence that exerciseâ€induced improvements in muscular strength are partly due to adaptations in the brain. Acta Physiologica, 2012, 206, 96-97.	3.8	4
66	Combined renal MRA and perfusion with a single dose of contrast. Magnetic Resonance Imaging, 2012, 30, 878-885.	1.8	6
67	Muscle Coordination Is Habitual Rather than Optimal. Journal of Neuroscience, 2012, 32, 7384-7391.	3.6	197
68	Magnetization spoiling in radial FLASH contrastâ€enhanced MR digital subtraction angiography. Journal of Magnetic Resonance Imaging, 2012, 36, 249-258.	3.4	8
69	Cortical and Spinal Excitability during and after Lengthening Contractions of the Human Plantar Flexor Muscles Performed with Maximal Voluntary Effort. PLoS ONE, 2012, 7, e49907.	2.5	46
70	Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. Journal of Applied Physiology, 2011, 110, 166-175.	2.5	75
71	Early neural responses to strength training. Journal of Applied Physiology, 2011, 111, 367-375.	2.5	72
72	Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiologica, 2011, 202, 119-140.	3.8	128

#	Article	IF	CITATIONS
73	Force synchrony enhances the stability of rhythmic multi-joint arm coordination. Experimental Brain Research, 2011, 213, 117-124.	1.5	0
74	Timeâ€resolved magnetic resonance angiography: Evaluation of intrapulmonary circulation parameters in pulmonary arterial hypertension. Journal of Magnetic Resonance Imaging, 2011, 33, 225-231.	3.4	27
75	Changes in muscle directional tuning parallel feedforward adaptation to a visuomotor rotation. Experimental Brain Research, 2010, 203, 701-709.	1.5	11
76	The ipsilateral motor cortex contributes to crossâ€limb transfer of performance gains after ballistic motor practice. Journal of Physiology, 2010, 588, 201-212.	2.9	152
77	Three-Dimensional Phase-Sensitive Inversion-Recovery Turbo FLASH Sequence for the Evaluation of Left Ventricular Myocardial Scar. American Journal of Roentgenology, 2009, 193, W381-W388.	2.2	48
78	4D Radial Acquisition Contrast-Enhanced MR Angiography and Intracranial Arteriovenous Malformations. Stroke, 2009, 40, 2749-2753.	2.0	62
79	Radial slidingâ€window magnetic resonance angiography (MRA) with highlyâ€constrained projection reconstruction (HYPR). Magnetic Resonance in Medicine, 2009, 61, 1103-1113.	3.0	18
80	Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle and Nerve, 2009, 39, 186-196.	2.2	108
81	The effect of strength training on the force of twitches evoked by corticospinal stimulation in humans. Acta Physiologica, 2009, 197, 161-173.	3.8	38
82	Unilateral strength training increases voluntary activation of the opposite untrained limb. Clinical Neurophysiology, 2009, 120, 802-808.	1.5	109
83	Short-Term Strength Training Does Not Change Cortical Voluntary Activation. Medicine and Science in Sports and Exercise, 2009, 41, 1452-1460.	0.4	41
84	Three-Dimensional T2-Weighted MRI of the Human Femoral Arterial Vessel Wall at 3.0 Tesla. Investigative Radiology, 2009, 44, 619-626.	6.2	67
85	Increases in corticospinal responsiveness during a sustained submaximal plantar flexion. Journal of Applied Physiology, 2009, 107, 112-120.	2.5	37
86	Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Journal of Applied Physiology, 2009, 106, 556-565.	2.5	104
87	Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement. Experimental Brain Research, 2008, 189, 421-434.	1.5	9
88	No evidence for preferential activation of vastus medialis at extended knee angles. Acta Physiologica, 2008, 194, 175-175.	3.8	0
89	The effect of mechanical context on attentional cost in unimanual coordination. Human Movement Science, 2008, 27, 53-64.	1.4	0
90	Cortical voluntary activation can be reliably measured in human wrist extensors using transcranial magnetic stimulation. Clinical Neurophysiology, 2008, 119, 1130-1138.	1.5	38

#	Article	IF	CITATIONS
91	Vertebral artery dissection: not a rare cause of stroke in the young. Age and Ageing, 2008, 37, 345-346.	1.6	9
92	Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. Journal of Applied Physiology, 2008, 104, 1656-1664.	2.5	81
93	Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Neuroscience Letters, 2007, 419, 10-14.	2.1	54
94	Cross Education. Sports Medicine, 2007, 37, 1-14.	6.5	259
95	4D radial contrastâ€enhanced MR angiography with sliding subtraction. Magnetic Resonance in Medicine, 2007, 58, 962-972.	3.0	26
96	Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior. Muscle and Nerve, 2007, 35, 756-766.	2.2	69
97	Contralateral effects of unilateral strength training: evidence and possible mechanisms. Journal of Applied Physiology, 2006, 101, 1514-1522.	2.5	375
98	Corticospinal Excitability Is Lower During Rhythmic Arm Movement Than During Tonic Contraction. Journal of Neurophysiology, 2006, 95, 914-921.	1.8	50
99	The amplitude of Mmax in human wrist flexors varies during different muscle contractions despite constant posture. Journal of Neuroscience Methods, 2005, 149, 95-100.	2.5	23
100	Modulation of cutaneous reflexes in human upper limb muscles during arm cycling is independent of activity in the contralateral arm. Experimental Brain Research, 2005, 161, 133-144.	1.5	34
101	Task dependent gain regulation of spinal circuits projecting to the human flexor carpi radialis. Experimental Brain Research, 2005, 161, 299-306.	1.5	11
102	Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target. Experimental Brain Research, 2004, 155, 509-526.	1.5	44
103	Possible contributions of CPG activity to the control of rhythmic human arm movement. Canadian Journal of Physiology and Pharmacology, 2004, 82, 556-568.	1.4	109
104	Temporal precision of interceptive action: differential effects of target size and speed. Experimental Brain Research, 2003, 148, 425-438.	1.5	38
105	The sites of neural adaptation induced by resistance training in humans. Journal of Physiology, 2002, 544, 641-652.	2.9	185
106	Neural Adaptations to Resistance Training. Sports Medicine, 2001, 31, 829-840.	6.5	174
107	Corticospinal Responses to Motor Training Revealed by Transcranial Magnetic Stimulation. Exercise and Sport Sciences Reviews, 2001, 29, 54-59.	3.0	29
108	Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. Journal of Neuroscience Methods, 2001, 112, 193-202.	2.5	200

#	Article	IF	CITATIONS
109	Resistance training enhances the stability of sensorimotor coordination. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 221-227.	2.6	65
110	Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. European Journal of Applied Physiology, 1998, 78, 270-275.	2.5	49