Henny C Van Der Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544989/publications.pdf Version: 2024-02-01

		7561	15716
395	22,541	77	125
papers	citations	h-index	g-index
397	397	397	21237
all docs	docs citations	times ranked	citing authors

5.7

234

#	Article	IF	CITATIONS
1	Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiology Reviews, 1999, 23, 179-230.	3.9	800
2	Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface. Science Translational Medicine, 2012, 4, 153rv10.	5.8	575
3	Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 2019, 48, 428-446.	18.7	464
4	Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Reviews Microbiology, 2011, 9, 27-38.	13.6	461
5	In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 2002, 23, 1417-1423.	5.7	433
6	Transmission of Infection by Flexible Gastrointestinal Endoscopy and Bronchoscopy. Clinical Microbiology Reviews, 2013, 26, 231-254.	5.7	360
7	Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review. Acta Orthopaedica, 2001, 72, 557-571.	1.4	307
8	How a fungus escapes the water to grow into the air. Current Biology, 1999, 9, 85-88.	1.8	298
9	Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. ACS Nano, 2016, 10, 4779-4789.	7.3	293
10	A Shapeâ€Adaptive, Antibacterialâ€Coating of Immobilized Quaternaryâ€Ammonium Compounds Tethered on Hyperbranched Polyurea and its Mechanism of Action. Advanced Functional Materials, 2014, 24, 346-355.	7.8	271
11	Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation. Applied and Environmental Microbiology, 2010, 76, 3405-3408.	1.4	265
12	Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology (United) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 245
13	Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 2018, 261, 1-14.	7.0	245
14	Microbial biofilm growth vs. tissue integration: "The race for the surface―experimentally studied. Acta Biomaterialia, 2009, 5, 1399-1404.	4.1	239

	Detection of Biomaterial-Associated Infections in Orthopaedic Joint Implants. Clinical Orthopaedics and Related Research, 2003, 413, 261-268.	0.7		196
--	---	-----	--	-----

Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews, 2015, 39, 234-245.

Microbial Adhesion to Poly(ethylene oxide) Brushes:Â Influence of Polymer Chain Length and Temperature. Langmuir, 2004, 20, 10949-10955.

Microbial Adhesion in Flow Displacement Systems. Clinical Microbiology Reviews, 2006, 19, 127-141.

16

#	Article	IF	CITATIONS
19	Bacterial adhesion and growth on a polymer brush-coating. Biomaterials, 2008, 29, 4117-4121.	5.7	196
20	Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 2006, 49, 79-86.	2.5	192
21	Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity. ACS Applied Materials & Interfaces, 2017, 9, 12118-12129.	4.0	182
22	Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces. Applied and Environmental Microbiology, 2001, 67, 2531-2537.	1.4	178
23	<i>Streptococcus mutans</i> Competence-Stimulating Peptide Inhibits <i>Candida albicans</i> Hypha Formation. Eukaryotic Cell, 2009, 8, 1658-1664.	3.4	174
24	Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials, 2003, 24, 1829-1831.	5.7	172
25	How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?. PLoS Pathogens, 2012, 8, e1002440.	2.1	167
26	A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm. Advanced Functional Materials, 2013, 23, 2843-2849.	7.8	165
27	Purification and characterization of a surface-binding protein fromLactobacillus fermentumRC-14 that inhibits adhesion ofEnterococcus faecalis1131. FEMS Microbiology Letters, 2000, 190, 177-180.	0.7	163
28	Influence of surface roughness on streptococcal adhesion forces to composite resins. Dental Materials, 2011, 27, 770-778.	1.6	160
29	The phenomenon of infection with abdominal wall reconstruction. Biomaterials, 2007, 28, 2314-2327.	5.7	158
30	Initial adhesion and surface growth ofStaphylococcus epidermidis andPseudomonas aeruginosa on biomedical polymers. , 2000, 50, 208-214.		156
31	Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomaterialia, 2012, 8, 2047-2055.	4.1	151
32	Soft tissue integration versus early biofilm formation on different dental implant materials. Dental Materials, 2014, 30, 716-727.	1.6	147
33	Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials, 2001, 22, 1607-1611.	5.7	143
34	Bacterial Cell Surface Damage Due to Centrifugal Compaction. Applied and Environmental Microbiology, 2012, 78, 120-125.	1.4	138
35	Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opinion on Drug Delivery, 2013, 10, 341-351.	2.4	138
36	Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology (United Kingdom), 2003, 149, 3239-3246.	0.7	131

#	Article	IF	CITATIONS
37	Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthopaedica, 2000, 71, 625-629.	1.4	126
38	Influence of Biosurfactants from Probiotic Bacteria on Formation of Biofilms on Voice Prostheses. Applied and Environmental Microbiology, 2004, 70, 4408-4410.	1.4	126
39	Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 2009, 75, 6850-6855.	1.4	126
40	Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS Applied Materials & Interfaces, 2015, 7, 20304-20313.	4.0	125
41	Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials, 2011, 32, 6333-6341.	5.7	122
42	Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods. Applied and Environmental Microbiology, 2004, 70, 5441-5446.	1.4	119
43	Orthodontic treatment with fixed appliances and biofilm formation—a potential public health threat?. Clinical Oral Investigations, 2014, 18, 1711-1718.	1.4	117
44	Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids and Surfaces B: Biointerfaces, 2006, 53, 105-112.	2.5	116
45	Specific Molecular Recognition and Nonspecific Contributions to Bacterial Interaction Forces. Applied and Environmental Microbiology, 2008, 74, 2559-2564.	1.4	114
46	Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules, 2014, 15, 2019-2026.	2.6	112
47	Eradication of Multidrugâ€Resistant <i>Staphylococcal</i> Infections by Lightâ€Activatable Micellar Nanocarriers in a Murine Model. Advanced Functional Materials, 2017, 27, 1701974.	7.8	111
48	Synthesis and Characterization of Surface-Grafted Polyacrylamide Brushes and Their Inhibition of Microbial Adhesion. Langmuir, 2007, 23, 5120-5126.	1.6	108
49	Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomaterialia, 2017, 61, 66-74.	4.1	106
50	3Dâ€Printable Antimicrobial Composite Resins. Advanced Functional Materials, 2015, 25, 6756-6767.	7.8	105
51	Electric Current-Induced Detachment of Staphylococcus epidermidis Biofilms from Surgical Stainless Steel. Applied and Environmental Microbiology, 2004, 70, 6871-6874.	1.4	104
52	Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Frontiers in Chemistry, 2019, 7, 872.	1.8	104
53	Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology (United Kingdom), 2002, 148, 1161-1169.	0.7	100
54	In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia, 2018, 70, 12-24.	4.1	97

#	Article	IF	CITATIONS
55	The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthopaedica, 2003, 74, 670-676.	1.4	95
56	Influence of Fluid Shear and Microbubbles on Bacterial Detachment from a Surface. Applied and Environmental Microbiology, 2005, 71, 3668-3673.	1.4	94
57	Effects of Quaternary Ammonium Silane Coatings on Mixed Fungal and Bacterial Biofilms on Tracheoesophageal Shunt Prostheses. Applied and Environmental Microbiology, 2006, 72, 3673-3677.	1.4	94
58	Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation. Langmuir, 2009, 25, 6245-6249.	1.6	94
59	Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnology and Bioengineering, 2001, 76, 395-399.	1.7	93
60	Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 2013, 34, 9237-9243.	5.7	93
61	Methylobacterium and Its Role in Health Care-Associated Infection. Journal of Clinical Microbiology, 2014, 52, 1317-1321.	1.8	92
62	A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms. MBio, 2013, 4, e00497-13.	1.8	91
63	Influence of Culture Heterogeneity in Cell Surface Charge on Adhesion and Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, 2006, 188, 2421-2426.	1.0	90
64	Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology (United Kingdom), 2006, 152, 2673-2682.	0.7	90
65	Current State of Craniofacial Prosthetic Rehabilitation. International Journal of Prosthodontics, 2013, 26, 57-67.	0.7	90
66	Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids and Surfaces B: Biointerfaces, 1996, 8, 51-61.	2.5	89
67	The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials, 2007, 28, 4105-4112.	5.7	88
68	Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli. PLoS ONE, 2012, 7, e36917.	1.1	88
69	In Vivo Evaluation of Bacterial Infection Involving Morphologically Different Surgical Meshes. Annals of Surgery, 2010, 251, 133-137.	2.1	85
70	`Soft-particle' analysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius. Biophysical Chemistry, 1998, 74, 251-255.	1.5	84
71	Direct Probing by Atomic Force Microscopy of the Cell Surface Softness of a Fibrillated and Nonfibrillated Oral Streptococcal Strain. Biophysical Journal, 2000, 78, 2668-2674.	0.2	84
72	Copal Bone Cement Is More Effective in Preventing Biofilm Formation than Palacos R-G. Clinical Orthopaedics and Related Research, 2008, 466, 1492-1498.	0.7	84

#	Article	IF	CITATIONS
73	Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy. Langmuir, 2008, 24, 12990-12994.	1.6	84
74	Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy, 2001, 86, 113-120.	0.8	83
75	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 1. Storage in air. Journal of Adhesion Science and Technology, 1995, 9, 1263-1278.	1.4	82
76	Interfacial re-arrangement in initial microbial adhesion to surfaces. Current Opinion in Colloid and Interface Science, 2010, 15, 510-517.	3.4	82
77	Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomaterialia, 2018, 79, 331-343.	4.1	82
78	Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2001, 45, 95-101.	0.7	81
79	Role of eDNA on the Adhesion Forces between <i>Streptococcus mutans</i> and Substratum Surfaces: Influence of Ionic Strength and Substratum Hydrophobicity. Langmuir, 2011, 27, 10113-10118.	1.6	80
80	Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. Urology, 1997, 49, 790-794.	0.5	77
81	DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 2011, 7, 2927.	1.2	77
82	Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials, 2013, 34, 8013-8017.	5.7	77
83	Bacterial interactions with nanostructured surfaces. Current Opinion in Colloid and Interface Science, 2018, 38, 170-189.	3.4	77
84	Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids and Surfaces B: Biointerfaces, 2005, 41, 33-41.	2.5	76
85	Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy. Applied and Environmental Microbiology, 2011, 77, 5065-5070.	1.4	76
86	Interfacial self-assembly of a Schizophyllum commune hydrophobin into an insoluble amphipathic protein membrane depends on surface hydrophobicity. Colloids and Surfaces B: Biointerfaces, 1995, 5, 189-195.	2.5	74
87	The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. Canadian Journal of Microbiology, 1999, 45, 691-694.	0.8	74
88	Analysis of the Interfacial Properties of Fibrillated and Nonfibrillated Oral Streptococcal Strains from Electrophoretic Mobility and Titration Measurements:Â Evidence for the Shortcomings of the â€~Classical Soft-Particle Approach'. Langmuir, 2005, 21, 11268-11282.	1.6	74
89	Determination of the Shear Force at the Balance between Bacterial Attachment and Detachment in Weak-Adherence Systems, Using a Flow Displacement Chamber. Applied and Environmental Microbiology, 2008, 74, 916-919.	1.4	73
90	Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—An intravital imaging study in mice. Science Advances, 2020, 6, eabb1112.	4.7	73

#	Article	IF	CITATIONS
91	Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. Biomaterials, 2007, 28, 2122-2126.	5.7	72
92	Comparison of the Microbial Composition of Voice Prosthesis Biofilms from Patients Requiring Frequent versus Infrequent Replacement. Annals of Otology, Rhinology and Laryngology, 2002, 111, 200-203.	0.6	71
93	Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. Microbiology (United Kingdom), 2004, 150, 1779-1784.	0.7	71
94	Artificial Channels in an Infectious Biofilm Created by Magnetic Nanoparticles Enhanced Bacterial Killing by Antibiotics. Small, 2019, 15, e1902313.	5.2	70
95	Bacterial Strains Isolated from Different Niches Can Exhibit Different Patterns of Adhesion to Substrata. Applied and Environmental Microbiology, 2004, 70, 3758-3760.	1.4	69
96	Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008, 64, 297-301.	2.5	69
97	Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces. Applied and Environmental Microbiology, 2014, 80, 637-643.	1.4	69
98	Plasticizers Increase Adhesion of the Deteriogenic Fungus <i>Aureobasidium pullulans</i> to Polyvinyl Chloride. Applied and Environmental Microbiology, 1999, 65, 3575-3581.	1.4	68
99	Probing Colloid–Substratum Contact Stiffness by Acoustic Sensing in a Liquid Phase. Analytical Chemistry, 2012, 84, 4504-4512.	3.2	68
100	Comparison of methods to evaluate bacterial contact-killing materials. Acta Biomaterialia, 2017, 59, 139-147.	4.1	67
101	Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiology Reviews, 2018, 42, 259-272.	3.9	66
102	A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials, 2009, 30, 4738-4742.	5.7	65
103	Lengthâ€ S cale Mediated Differential Adhesion of Mammalian Cells and Microbes. Advanced Functional Materials, 2011, 21, 3916-3923.	7.8	65
104	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen. Journal of Adhesion Science and Technology, 1996, 10, 351-359.	1.4	64
105	[31] Biosurfactants produced by Lactobacillus. Methods in Enzymology, 1999, 310, 426-433.	0.4	64
106	Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials, 2003, 24, 2707-2710.	5.7	63
107	Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber. Colloids and Surfaces B: Biointerfaces, 2003, 32, 179-190.	2.5	63
108	[38] Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 1999, 310, 523-534.	0.4	62

#	Article	IF	CITATIONS
109	Influence of Cell Surface Appendages on the Bacteriumâ^'Substratum Interface Measured Real-Time Using QCM-D. Langmuir, 2009, 25, 1627-1632.	1.6	62
110	Growth of Fibroblasts and Endothelial Cells on Wettability Gradient Surfaces. Journal of Colloid and Interface Science, 1997, 188, 209-217.	5.0	61
111	The Effect of Dissolved Organic Carbon on Bacterial Adhesion to Conditioning Films Adsorbed on Glass from Natural Seawater Collected during Different Seasons. Biofouling, 2003, 19, 391-397.	0.8	59
112	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942.	7.8	59
113	or not to treat?. Nature Medicine, 1999, 5, 358-359.	15.2	58
114	Electrophoretic Mobility Distributions of Single-Strain Microbial Populations. Applied and Environmental Microbiology, 2001, 67, 491-494.	1.4	58
115	Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics. Biomaterials, 2007, 28, 2032-2040.	5.7	58
116	Biofilms in chronic diabetic foot ulcers—a study of 2 cases. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 82, 383-385.	1.2	58
117	Staphylococcal Adhesion, Detachment and Transmission on Nanopillared Si Surfaces. ACS Applied Materials & Interfaces, 2016, 8, 30430-30439.	4.0	57
118	A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber: basic principles of the analysis. Journal of Microbiological Methods, 1994, 20, 289-305.	0.7	56
119	Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. Journal of Colloid and Interface Science, 2004, 278, 251-254.	5.0	56
120	The potential for bio-optical imaging of biomaterial-associated infection in vivo. Biomaterials, 2010, 31, 1984-1995.	5.7	56
121	Bond Strengthening in Oral Bacterial Adhesion to Salivary Conditioning Films. Applied and Environmental Microbiology, 2008, 74, 5511-5515.	1.4	55
122	Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules, 2019, 20, 243-253.	2.6	55
123	Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber. Journal of Adhesion Science and Technology, 1997, 11, 957-969.	1.4	54
124	Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli – a teleologic approach. World Journal of Urology, 2000, 18, 422-426.	1.2	54
125	Influence of a chitosan on oral bacterial adhesion and growth <i>in vitro</i> . European Journal of Oral Sciences, 2008, 116, 493-495.	0.7	54

In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{126}{54}$

#	Article	IF	CITATIONS
127	Influence of Adhesion Force on <i>icaA</i> and <i>cidA</i> Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2015, 81, 3369-3378.	1.4	54
128	The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. Microbiology (United Kingdom), 2001, 147, 757-762.	0.7	53
129	Dynamic Cell Surface Hydrophobicity of Lactobacillus Strains with and without Surface Layer Proteins. Journal of Bacteriology, 2004, 186, 6647-6650.	1.0	53
130	The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains. Journal of Antimicrobial Chemotherapy, 2006, 58, 1287-1290.	1.3	53
131	Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology (United Kingdom), 2002, 148, 597-603.	0.7	53
132	Molecular surface characterization of oral streptococci by Fourier transform infrared spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 1989, 991, 395-398.	1.1	52
133	Resistance to a polyquaternium-1 lens care solution and isoelectric points of Pseudomonas aeruginosa strains. Journal of Antimicrobial Chemotherapy, 2006, 57, 764-766.	1.3	52
134	Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomaterialia, 2009, 5, 1905-1910.	4.1	52
135	Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2018, 84, .	1.4	51
136	Cascadeâ€Targeting Poly(amino acid) Nanoparticles Eliminate Intracellular Bacteria via Onâ€Site Antibiotic Delivery. Advanced Materials, 2022, 34, e2109789.	11.1	51
137	Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket–adhesive–enamel junction in orthodontic treatment. European Journal of Oral Sciences, 2009, 117, 419-426.	0.7	50
138	Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. Journal of Colloid and Interface Science, 2009, 331, 60-64.	5.0	50
139	Novel Analysis of Bacteriumâ~'Substratum Bond Maturation Measured Using a Quartz Crystal Microbalance. Langmuir, 2010, 26, 11113-11117.	1.6	50
140	Acoustic sensing of the bacterium–substratum interface using QCM-D and the influence of extracellular polymeric substances. Journal of Colloid and Interface Science, 2011, 357, 135-138.	5.0	50
141	Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics. Antimicrobial Agents and Chemotherapy, 2012, 56, 4961-4964.	1.4	50
142	Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber. Colloids and Surfaces B: Biointerfaces, 1998, 10, 179-190.	2.5	49
143	Intraoperative Contamination Influences Wound Discharge and Periprosthetic Infection. Clinical Orthopaedics and Related Research, 2006, 452, 236-241.	0.7	49
144	Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment. PLoS Pathogens, 2015, 11, e1005057.	2.1	49

#	Article	IF	CITATIONS
145	Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2005, 46, 1-6.	2.5	48
146	Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 123-129.	1.6	48
147	Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses. NPG Asia Materials, 2014, 6, e121-e121.	3.8	48
148	Substrate viscosity plays an important role in bacterial adhesion under fluid flow. Journal of Colloid and Interface Science, 2019, 552, 247-257.	5.0	48
149	Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 2021, 10, 623.	1.5	48
150	Physicochemical Surface Characteristics of Urogenital and Poultry Lactobacilli. Journal of Colloid and Interface Science, 1993, 156, 319-324.	5.0	46
151	Kinetics of Interfacial Tension Changes during Protein Adsorption from Sessile Droplets on FEP–Teflon. Journal of Colloid and Interface Science, 1996, 179, 57-65.	5.0	46
152	On Relations between Microscopic and Macroscopic Physicochemical Properties of Bacterial Cell Surfaces:Â An AFM Study onStreptococcus mitisStrains. Langmuir, 2003, 19, 2372-2377.	1.6	46
153	In Vitro Interactions between Bacteria, Osteoblast-Like Cells and Macrophages in the Pathogenesis of Biomaterial-Associated Infections. PLoS ONE, 2011, 6, e24827.	1.1	46
154	Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 2020, 246, 112188.	2.0	46
155	Survival of Adhering Staphylococci during Exposure to a Quaternary Ammonium Compound Evaluated by Using Atomic Force Microscopy Imaging. Antimicrobial Agents and Chemotherapy, 2011, 55, 5010-5017.	1.4	45
156	Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?. Advanced Healthcare Materials, 2019, 8, e1801323.	3.9	45
157	Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Microbiology (United Kingdom), 2004, 150, 1015-1022.	0.7	44
158	Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. Soft Matter, 2012, 8, 6454.	1.2	44
159	Biofilm composition and composite degradation during intra-oral wear. Dental Materials, 2019, 35, 740-750.	1.6	44
160	Antifungalâ€Inbuilt Metal–Organicâ€Frameworks Eradicate <i>Candida albicans</i> Biofilms. Advanced Functional Materials, 2020, 30, 2000537.	7.8	44
161	Biofilm formation on ureteral stents - Incidence, clinical impact, and prevention. Swiss Medical Weekly, 2017, 147, w14408.	0.8	44
162	Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials, 2014, 35, 2580-2587.	5.7	43

#	Article	IF	CITATIONS
163	Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. Scientific Reports, 2019, 9, 9794.	1.6	43
164	Stress Relaxation Analysis Facilitates a Quantitative Approach towards Antimicrobial Penetration into Biofilms. PLoS ONE, 2013, 8, e63750.	1.1	42
165	Adhesion of coagulase-negative staphylococci grouped according to Physico-chemical surface properties. Microbiology (United Kingdom), 1997, 143, 3861-3870.	0.7	41
166	Effect of dairy products on the lifetime of Provox2 voice prostheses in vitro and in vivo. Head and Neck, 2005, 27, 471-477.	0.9	41
167	Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiology Reviews, 1998, 21, 321-336.	3.9	40
168	Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber. Physical Chemistry Chemical Physics, 1999, 1, 4423-4427.	1.3	40
169	The Influence of Biosurfactants Released byS. mitisBMS on the Adhesion of Pioneer Strains and Cariogenic Bacteria. Biofouling, 2004, 20, 261-267.	0.8	39
170	Prevention of biofilm formation by dairy products and N-Acetylcysteine on voice prostheses in an artificial throat. Acta Oto-Laryngologica, 2004, 124, 726-731.	0.3	39
171	The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling, 2010, 26, 761-767.	0.8	39
172	Microbial biofilms on facial prostheses. Biofouling, 2012, 28, 583-591.	0.8	39
173	Role of Structure and Glycosylation of Adsorbed Protein Films in Biolubrication. PLoS ONE, 2012, 7, e42600.	1.1	39
174	<i>Staphylococcus aureus</i> -Fibronectin Interactions with and without Fibronectin-Binding Proteins and Their Role in Adhesion and Desorption. Applied and Environmental Microbiology, 2008, 74, 7522-7528.	1.4	38
175	Concepts for increasing gentamicin release from handmade bone cement beads. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 508-513.	1.2	38
176	Water in bacterial biofilms: pores and channels, storage and transport functions. Critical Reviews in Microbiology, 2022, 48, 283-302.	2.7	38
177	Transfer of bacteria between biomaterials surfaces in the operating room—An experimental study. Journal of Biomedical Materials Research - Part A, 2007, 80A, 790-799.	2.1	37
178	Physico-chemistry of bacterial transmission versus adhesion. Advances in Colloid and Interface Science, 2017, 250, 15-24.	7.0	37
179	Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology (United Kingdom), 2010, 156, 3073-3078.	0.7	36
180	Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. Microbiology (United Kingdom), 2002, 148, 1863-1870.	0.7	36

#	Article	IF	CITATIONS
181	Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers. Biomaterials, 2011, 32, 979-984.	5.7	35
182	Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Scientific Reports, 2017, 7, 4369.	1.6	35
183	Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. MBio, 2019, 10, .	1.8	35
184	Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion. Langmuir, 2019, 35, 1882-1894.	1.6	35
185	Low-Load Compression Testing: a Novel Way of Measuring Biofilm Thickness. Applied and Environmental Microbiology, 2007, 73, 7023-7028.	1.4	34
186	Chitosan adsorption to salivary pellicles. European Journal of Oral Sciences, 2007, 115, 303-307.	0.7	34
187	Poisson Analysis of Streptococcal Bond Strengthening on Stainless Steel with and without a Salivary Conditioning Film. Langmuir, 2009, 25, 6227-6231.	1.6	34
188	Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth. Biomaterials, 2014, 35, 5446-5452.	5.7	34
189	Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opinion on Drug Delivery, 2020, 17, 1151-1164.	2.4	34
190	A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber. II: Analysis of the kinetics of co-adhesion. Journal of Microbiological Methods, 1995, 23, 169-182.	0.7	33
191	Adhesion and surface-aggregation of Candida albicans from saliva on acrylic surfaces with adhering bacteria as studied in a parallel plate flow chamber. Antonie Van Leeuwenhoek, 1999, 75, 351-359.	0.7	33
192	Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. Journal of Controlled Release, 2019, 293, 73-83.	4.8	33
193	The release of gentamicin from acrylic bone cements in a simulated prosthesis-related interfacial gap. Journal of Biomedical Materials Research Part B, 2003, 64B, 1-5.	3.0	32
194	Antimicrobial efficacy of gentamicin-loaded acrylic bone cements with fusidic acid or clindamycin added. Journal of Orthopaedic Research, 2006, 24, 291-299.	1.2	32
195	Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology (United Kingdom), 2006, 152, 807-814.	0.7	32
196	Antibacterial efficacy of a new gentamicinâ€coating for cementless prostheses compared to gentamicinâ€koaded bone cement. Journal of Orthopaedic Research, 2011, 29, 1654-1661.	1.2	32
197	Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International Journal of Oral Science, 2015, 7, 250-258.	3.6	32
198	Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Industrial & Engineering Chemistry Research, 2020, 59, 14323-14333.	1.8	32

#	Article	IF	CITATIONS
199	Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability. Journal of Biomedical Materials Research Part B, 2004, 71B, 336-342.	3.0	31
200	Intermolecular Forces and Enthalpies in the Adhesion of Streptococcus mutans and an Antigen I/II-Deficient Mutant to Laminin Films. Journal of Bacteriology, 2007, 189, 2988-2995.	1.0	31
201	A nanolayer coating on polydimethylsiloxane surfaces enables a mechanistic study of bacterial adhesion influenced by material surface physicochemistry. Materials Horizons, 2020, 7, 93-103.	6.4	31
202	Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles through an Infectious Biofilm Enhances Biofilm-Killing Efficacy. ACS Biomaterials Science and Engineering, 2020, 6, 205-212.	2.6	31
203	An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. Npj Biofilms and Microbiomes, 2020, 6, 46.	2.9	31
204	Antimicrobial Activity of Synthetic Salivary Peptides Against Voice Prosthetic Microorganisms. Laryngoscope, 2000, 110, 321-321.	1.1	30
205	Weibull analyses of bacterial interaction forces measured using AFM. Colloids and Surfaces B: Biointerfaces, 2010, 78, 372-375.	2.5	30
206	Potential benefits of chewing gum for the delivery of oral therapeutics and its possible role in oral healthcare. Expert Opinion on Drug Delivery, 2016, 13, 1421-1431.	2.4	30
207	Cluster analysis of genotypically characterized Lactobacillus species based on physicochemical cell surface properties and their relationship with adhesion to hexadecane. Canadian Journal of Microbiology, 1997, 43, 284-291.	0.8	29
208	Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses?an electron microscopical study. Journal of Biomedical Materials Research Part B, 2001, 58, 556-563.	3.0	29
209	<i>Ica</i> â€expression and gentamicin susceptibility of <i>Staphylococcus epidermidis</i> biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96A, 365-371.	2.1	29
210	A gentamicinâ€releasing coating for cementless hip prostheses—Longitudinal evaluation of efficacy using <i>in vitro</i> bioâ€optical imaging and its wideâ€spectrum antibacterial efficacy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3220-3226.	2.1	29
211	Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter, 2014, 10, 7638-7646.	1.2	29
212	Vacuum plasma sprayed coatings using ionic silver doped hydroxyapatite powder to prevent bacterial infection of bone implants. Biointerphases, 2016, 11, 011012.	0.6	29
213	A Trans-Atlantic Perspective on Stagnation in Clinical Translation of Antimicrobial Strategies for the Control of Biomaterial-Implant-Associated Infection. ACS Biomaterials Science and Engineering, 2019, 5, 402-406.	2.6	29
214	Antimicrobial Nanogels with Nanoinjection Capabilities for Delivery of the Hydrophobic Antibacterial Agent Triclosan. ACS Applied Polymer Materials, 2020, 2, 5779-5789.	2.0	29
215	Streptococcus mutans adhesion force sensing in multi-species oral biofilms. Npj Biofilms and Microbiomes, 2020, 6, 25.	2.9	29
216	Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance. Microbiology (United Kingdom), 2005, 151, 2459-2464.	0.7	28

#	Article	IF	CITATIONS
217	Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2011, 87, 427-432.	2.5	28
218	Recombinant Supercharged Polypeptides Restore and Improve Biolubrication. Advanced Materials, 2013, 25, 3426-3431.	11.1	28
219	Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. ACS Applied Materials & Interfaces, 2020, 12, 57721-57731.	4.0	28
220	PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. Acta Biomaterialia, 2021, 123, 230-243.	4.1	28
221	Surface Aggregation ofCandida albicanson Glass in the Absence and Presence of AdheringStreptococcus gordoniiin a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid–Base Interactions. Journal of Colloid and Interface Science, 1999, 212, 495-502.	5.0	27
222	Adhesive interactions between voice prosthetic yeast and bacteria on silicone rubber in the absence and presence of saliva. Antonie Van Leeuwenhoek, 2001, 79, 337-343.	0.7	27
223	Softness of the bacterial cell wall of Streptococcus mitis as probed by microelectrophoresis. Electrophoresis, 2002, 23, 2007.	1.3	27
224	Removal of Two Waterborne Pathogenic Bacterial Strains by Activated Carbon Particles Prior to and after Charge Modification. Environmental Science & Technology, 2006, 40, 6799-6804.	4.6	27
225	Influence of Day and Night Wear on Surface Properties of Silicone Hydrogel Contact Lenses and Bacterial Adhesion. Cornea, 2006, 25, 516-523.	0.9	27
226	Streptococcus mutans and Streptococcus intermedius Adhesion to Fibronectin Films Are Oppositely Influenced by Ionic Strength. Langmuir, 2008, 24, 10968-10973.	1.6	27
227	Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces. Langmuir, 2018, 34, 4937-4944.	1.6	27
228	Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa. Investigative Ophthalmology and Visual Science, 2002, 43, 3646-53.	3.3	27
229	Physicochemical and structural studies onAcinetobacter calcoaceticus RAG-1 and MR-481—Two standard strains in hydrophobicity tests. Current Microbiology, 1991, 23, 337-341.	1.0	26
230	Interfacial Free Energies in Protein Solution Droplets on FEP-Teflon by Axisymmetric Drop Shape Analysis by Profile—IgG versus BSA. Journal of Colloid and Interface Science, 1993, 156, 129-136.	5.0	26
231	Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound. Journal of Controlled Release, 2003, 92, 369-374.	4.8	26
232	Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. Journal of Antimicrobial Chemotherapy, 2008, 62, 1323-1325.	1.3	26
233	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie - International Edition, 2021, 60, 17714-17719.	7.2	26
234	Adhesion to Bile Drain Materials and Physicochemical Surface Properties of Enterococcus faecalis Strains Grown in the Presence of Bile. Applied and Environmental Microbiology, 2002, 68, 3855-3858.	1.4	25

#	Article	IF	CITATIONS
235	The Influence of Radiotherapy on the Lifetime of Silicone Rubber Voice Prostheses in Laryngectomized Patients. Laryngoscope, 2002, 112, 1680-1683.	1.1	25
236	Adhesion and viability of waterborne pathogens on p-DADMAC coatings. Biotechnology and Bioengineering, 2008, 99, 165-169.	1.7	25
237	Surface Thermodynamic and Adhesion Force Evaluation of the Role of Chitin-Binding Protein in the Physical Interaction between <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> . Langmuir, 2013, 29, 4823-4829.	1.6	25
238	Nanoscopic Vibrations of Bacteria with Different Cell-Wall Properties Adhering to Surfaces under Flow and Static Conditions. ACS Nano, 2014, 8, 8457-8467.	7.3	25
239	SnapShot: Biofilms and Biomaterials; Mechanisms of Medical Device Related Infections. Biomaterials, 2009, 30, 4247-4248.	5.7	24
240	Oral biofilm models for mechanical plaque removal. Clinical Oral Investigations, 2010, 14, 403-409.	1.4	24
241	Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymerâ€brush coating. Journal of Biomedical Materials Research - Part A, 2010, 94A, 533-538.	2.1	24
242	Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion. Acta Biomaterialia, 2010, 6, 4271-4276.	4.1	24
243	Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. Journal of Biomedical Materials Research - Part A, 2015, 103, 3590-3598.	2.1	24
244	Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomaterialia, 2015, 18, 1-8.	4.1	24
245	A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions. Journal of Nanobiotechnology, 2020, 18, 166.	4.2	24
246	Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs—a microcalorimetric study. Journal of Microbiological Methods, 2003, 55, 241-247.	0.7	23
247	Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymerâ€Brush Functionalized Surfaces Under Fluid Flow. Advanced Functional Materials, 2014, 24, 4435-4441.	7.8	23
248	Adhesion of lactobacilli to urinary catheters and diapers: Effect of surface properties. Journal of Biomedical Materials Research Part B, 1994, 28, 731-734.	3.0	22
249	Interaction forces between waterborne bacteria and activated carbon particles. Journal of Colloid and Interface Science, 2008, 322, 351-357.	5.0	22
250	Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms. Applied and Environmental Microbiology, 2011, 77, 5027-5029.	1.4	22
251	Impact of solid surface hydrophobicity and micrococcal nuclease production on Staphylococcus aureus Newman biofilms. Scientific Reports, 2020, 10, 12093.	1.6	22
252	Eradicating Infecting Bacteria while Maintaining Tissue Integration on Photothermal Nanoparticle-Coated Titanium Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 34610-34619.	4.0	22

#	Article	IF	CITATIONS
253	<i>Escherichia coli</i> Colonization of Intestinal Epithelial Layers <i>In Vitro</i> in the Presence of Encapsulated <i>Bifidobacterium breve</i> for Its Protection against Gastrointestinal Fluids and Antibiotics. ACS Applied Materials & amp; Interfaces, 2021, 13, 15973-15982.	4.0	22
254	Initial microbial adhesion events: mechanisms and implications. , 2000, , 25-36.		21
255	Surfactive and antibacterial activity of cetylpyridinium chloride formulations in vitro and in vivo. Journal of Clinical Periodontology, 2008, 35, 547-554.	2.3	21
256	Influence of fluoride–detergent combinations on the viscoâ€elasticity of adsorbed salivary protein films. European Journal of Oral Sciences, 2011, 119, 21-26.	0.7	21
257	Bacterial Cell Surface Heterogeneity: A Pathogen's Disguise. PLoS Pathogens, 2012, 8, e1002821.	2.1	21
258	Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model. Acta Biomaterialia, 2019, 96, 237-246.	4.1	21
259	Microbubble-induced detachment of coadhering oral bacteria from salivary pellicles. European Journal of Oral Sciences, 2005, 113, 326-332.	0.7	20
260	Lactobacilli: Important in Biofilm Formation on Voice Prostheses. Otolaryngology - Head and Neck Surgery, 2007, 137, 505-507.	1.1	20
261	Interaction Forces between Salivary Proteins and <i>Streptococcus mutans</i> with and without Antigen I/II. Langmuir, 2007, 23, 9423-9428.	1.6	20
262	Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow. Biotechnology and Bioengineering, 2008, 100, 810-813.	1.7	20
263	Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis. Journal of Colloid and Interface Science, 2011, 358, 430-436.	5.0	20
264	The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D. Soft Matter, 2012, 8, 9870.	1.2	20
265	Role of Viscoelasticity in Bacterial Killing by Antimicrobials in Differently Grown <i>Pseudomonas aeruginosa</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	20
266	A Comparison of Different Approaches To Calculate Surface Free Energies of Protein-Coated Substrata from Measured Contact Angles of Liquids. Langmuir, 1994, 10, 1314-1318.	1.6	19
267	On the wettability of soft tissues in the human oral cavity. Archives of Oral Biology, 2004, 49, 671-673.	0.8	19
268	Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation. Clinical Oral Investigations, 2012, 16, 1499-1506.	1.4	19
269	Synergy of brushing mode and antibacterial use on in vivo biofilm formation. Journal of Dentistry, 2015, 43, 1580-1586.	1.7	19
270	Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms. Journal of Materials Science and Technology, 2021, 69, 69-78.	5.6	19

#	Article	IF	CITATIONS
271	Structural and physicochemical surface properties of <i>Serratia marcescens</i> strains. Canadian Journal of Microbiology, 1992, 38, 1033-1041.	0.8	18
272	Physicochemical characteristics of two pairs of coagulase-negative staphylococcal isolates with different plasmid profiles. Colloids and Surfaces B: Biointerfaces, 1994, 2, 73-82.	2.5	18
273	UropathogenicEscherichia coliadhere to urinary catheters without using fimbriae. FEMS Immunology and Medical Microbiology, 1996, 16, 159-162.	2.7	18
274	Recalcitrance of Streptococcus mutans biofilms towards detergent-stimulated detachment. European Journal of Oral Sciences, 1999, 107, 236-243.	0.7	18
275	Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata. Colloids and Surfaces B: Biointerfaces, 2008, 67, 276-278.	2.5	18
276	Adhesive Bond Stiffness of Staphylococcus aureus with and without Proteins That Bind to an Adsorbed Fibronectin Film. Applied and Environmental Microbiology, 2012, 78, 99-102.	1.4	18
277	Contact-Killing of Adhering Streptococci by a Quaternary Ammonium Compound Incorporated in an Acrylic Resin. International Journal of Artificial Organs, 2012, 35, 854-863.	0.7	18
278	Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber. PLoS ONE, 2014, 9, e104508.	1.1	18
279	Efficacy of cleansing agents in killing microorganisms in mixed species biofilms present on silicone facial prostheses—an in vitro study. Clinical Oral Investigations, 2015, 19, 2285-2293.	1.4	18
280	In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens. International Journal of Oral Science, 2015, 7, 42-48.	3.6	18
281	Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. Materials Science and Engineering C, 2021, 123, 112021.	3.8	18
282	Role of the flagellar hook in the structural development and antibiotic tolerance of <i>Pseudomonas aeruginosa</i> biofilms. ISME Journal, 2022, 16, 1176-1186.	4.4	18
283	The role of physicochemical and structural surface properties in co-adhesion of microbial pairs in a parallel-plate flow chamber. Colloids and Surfaces B: Biointerfaces, 1996, 7, 101-112.	2.5	17
284	Bacterial Transmission from Contact Lenses to Porcine Corneas: An Ex Vivo Study. , 2005, 46, 2042.		17
285	recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. Antonie Van Leeuwenhoek, 2008, 94, 317-328.	0.7	17
286	Persistence of a bioluminescent Staphylococcus aureus strain on and around degradable and non-degradable surgical meshes in a murine model. Acta Biomaterialia, 2012, 8, 3991-3996.	4.1	17
287	The influence of Co–Cr and UHMWPE particles on infection persistence: An in vivo study in mice. Journal of Orthopaedic Research, 2012, 30, 341-347.	1.2	17
288	Nonadhesive, silica nanoparticlesâ€based brushâ€coated contact lens cases—Compromising between ease of cleaning and microbial transmission to contact lenses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 640-647.	1.6	17

#	Article	IF	CITATIONS
289	An <i>in vitro</i> investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	17
290	Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation. Applied Surface Science, 2015, 356, 325-332.	3.1	17
291	Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses. Journal of Colloid and Interface Science, 2018, 512, 14-20.	5.0	17
292	A comparison of the detachment of an adhering oral streptococcal strain stimulated by mouthrinses and a preâ€brushing rinse. Biofouling, 1996, 9, 327-339.	0.8	16
293	The Influence of Antimicrobial Peptides and Mucolytics on the Integrity of Biofilms Consisting of Bacteria and Yeasts as Affecting Voice Prosthetic Air Flow Resistances. Biofouling, 2003, 19, 347-353.	0.8	16
294	Role of Interfacial Tensions in the Translocation of <i>Rhodococcus erythropolis</i> during Growth in a Two Phase Culture. Environmental Science & Technology, 2009, 43, 8290-8294.	4.6	16
295	Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients. Clinical Oral Investigations, 2012, 16, 1435-1442.	1.4	16
296	Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials. Clinical Oral Investigations, 2013, 17, 1209-1218.	1.4	16
297	Poly(trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapyâ€recalcitrant staphylococcal biofilms. Journal of Orthopaedic Research, 2016, 34, 1828-1837.	1.2	16
298	Preparation and Evaluation of Antimicrobial Hyperbranched Emulsifiers for Waterborne Coatings. Langmuir, 2019, 35, 5779-5786.	1.6	16
299	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. Biomaterials, 2020, 232, 119737.	5.7	16
300	Applications and Perspectives of Cascade Reactions in Bacterial Infection Control. Frontiers in Chemistry, 2019, 7, 861.	1.8	16
301	Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics <i>in vitro</i> and <i>in vivo</i> . Nanoscale, 2021, 13, 4644-4653.	2.8	16
302	Correlation between genetic, physico-chemical surface characteristics and adhesion of four strains of Lactobacillus. Colloids and Surfaces B: Biointerfaces, 1999, 13, 75-81.	2.5	15
303	In Vitro Oral Biofilm Formation on Triclosan-Coated Sutures in the Absence and Presence of Additional Antiplaque Treatment. Journal of Oral and Maxillofacial Surgery, 2011, 69, 980-985.	0.5	15
304	Antimicrobial penetration in a dual-species oral biofilm after noncontact brushing: an in vitro study. Clinical Oral Investigations, 2014, 18, 1103-1109.	1.4	15
305	Secreted products of oral bacteria and biofilms impede mineralization of apical papilla stem cells in TLR-, species-, and culture-dependent fashion. Scientific Reports, 2018, 8, 12529.	1.6	15
306	Penetration and Accumulation of Dendrons with Different Peripheral Composition in <i>Pseudomonas aeruginosa</i> Biofilms. Nano Letters, 2019, 19, 4327-4333.	4.5	15

#	Article	IF	CITATIONS
307	Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Frontiers in Microbiology, 2020, 11, 599555.	1.5	15
308	Hexametaphosphate effects on tooth surface conditioning film chemistryin vitro and in vivo studies. Journal of Clinical Dentistry, 2002, 13, 38-43.	0.9	15
309	Influence of temperature on the co-adhesion of oral microbial pairs in saliva. European Journal of Oral Sciences, 1996, 104, 372-377.	0.7	14
310	Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. European Journal of Oral Sciences, 2011, 119, 151-155.	0.7	14
311	Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae—An AFM study. Colloids and Surfaces B: Biointerfaces, 2013, 110, 45-50.	2.5	14
312	Quantification and Qualification of Bacteria Trapped in Chewed Gum. PLoS ONE, 2015, 10, e0117191.	1.1	14
313	Extraction of Biofilms From Ureteral Stents for Quantification and Cultivation-Dependent and -Independent Analyses. Frontiers in Microbiology, 2018, 9, 1470.	1.5	14
314	Detection by physico-chemical techniques of an amphiphilic surface component on Streptococcus mitis strains involved in non-electrostatic binding to surfaces. European Journal of Oral Sciences, 1996, 104, 48-55.	0.7	13
315	Dot assay for determining adhesive interactions between yeasts and bacteria under controlled hydrodynamic conditions. Journal of Microbiological Methods, 2000, 40, 225-232.	0.7	13
316	Biomechanical and surface physico-chemical analyses of used osteosynthesis plates and screws—Potential for reuse in developing countries?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 236-244.	1.6	13
317	Influence of Co-Cr Particles and Co-Cr Ions on the Growth of Staphylococcal Biofilms. International Journal of Artificial Organs, 2011, 34, 759-765.	0.7	13
318	Surface enhanced bacterial fluorescence and enumeration of bacterial adhesion. Biofouling, 2013, 29, 11-19.	0.8	13
319	Visualization of Microbiological Processes Underlying Stress Relaxation in <i>Pseudomonas aeruginosa</i> Biofilms. Microscopy and Microanalysis, 2014, 20, 912-915.	0.2	13
320	Role of adhesion forces in mechanosensitive channel gating in Staphylococcus aureus adhering to surfaces. Npj Biofilms and Microbiomes, 2020, 6, 31.	2.9	13
321	Enhanced bacterial killing by vancomycin in staphylococcal biofilms disrupted by novel, DMMA-modified carbon dots depends on EPS production. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111114.	2.5	13
322	In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioactive Materials, 2022, 14, 321-334.	8.6	13
323	The influence of subinhibitory concentrations of ampicillin and vancomycin on physico-chemical surface characteristics of Enterococcus faecalis 1131. Colloids and Surfaces B: Biointerfaces, 2002, 24, 285-295.	2.5	12
324	Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 46, 713-717.	1.1	12

#	Article	IF	CITATIONS
325	Transcriptional Profiling of C. albicans in a Two Species Biofilm with Rothia dentocariosa. Frontiers in Cellular and Infection Microbiology, 2017, 7, 311.	1.8	12
326	Surface enhanced fluorescence and nanoscopic cell wall deformation in adhering <i>Staphylococcus aureus</i> upon exposure to cell wall active and non-active antibiotics. Nanoscale, 2018, 10, 11123-11133.	2.8	12
327	Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms. Journal of Materials Science and Technology, 2021, 84, 208-218.	5.6	12
328	Oral Probiotics for Maternal and Newborn Health. Journal of Clinical Gastroenterology, 2005, 39, 353-354.	1.1	11
329	Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II. Colloids and Surfaces B: Biointerfaces, 2007, 54, 193-199.	2.5	11
330	On-demand antimicrobial release from a temperature-sensitive polymer — Comparison with ad libitum release from central venous catheters. Journal of Controlled Release, 2014, 188, 61-66.	4.8	11
331	Antimicrobials Influence Bond Stiffness and Detachment of Oral Bacteria. Journal of Dental Research, 2016, 95, 793-799.	2.5	11
332	Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin–Voigt and Maxwell models. Physical Chemistry Chemical Physics, 2017, 19, 25391-25400.	1.3	11
333	Structural changes in <i>S. epidermidis</i> biofilms after transmission between stainless steel surfaces. Biofouling, 2017, 33, 712-721.	0.8	11
334	Visualization of Bacterial Colonization and Cellular Layers in a Gut-on-a-Chip System Using Optical Coherence Tomography. Microscopy and Microanalysis, 2020, 26, 1211-1219.	0.2	11
335	X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. Frontiers in Chemistry, 2021, 9, 666159.	1.8	11
336	Hydrophobicity of Peritoneal Tissues in the Rat. Journal of Colloid and Interface Science, 2002, 253, 470-471.	5.0	10
337	The influence of cyclic loading on gentamicin release from acrylic bone cements. Journal of Biomechanics, 2005, 38, 953-957.	0.9	10
338	Cholate-Stimulated Biofilm Formation by Lactococcus lactis Cells. Applied and Environmental Microbiology, 2011, 77, 2602-2610.	1.4	10
339	Viscous Nature of the Bond between Adhering Bacteria and Substratum Surfaces Probed by Atomic Force Microscopy. Langmuir, 2014, 30, 3165-3169.	1.6	10
340	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie, 2021, 133, 17855-17860.	1.6	10
341	Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids and Surfaces B: Biointerfaces, 2008, 64, 302-306.	2.5	9
342	Force Analysis of Bacterial Transmission from Contact Lens Cases to Corneas, with the Contact Lens		9

as the Intermediary. , 2011, 52, 2565.

#	Article	IF	CITATIONS
343	Environmental and centrifugal factors influencing the visco-elastic properties of oral biofilmsin vitro. Biofouling, 2012, 28, 913-920.	0.8	9
344	Use of hydroxyethyl starch for inducing red blood cell aggregation. Clinical Hemorheology and Microcirculation, 2012, 52, 27-35.	0.9	9
345	Clinical translation of the assets of biomedical engineering – a retrospective analysis with looks to the future. Expert Review of Medical Devices, 2019, 16, 913-922.	1.4	9
346	Clearance of ESKAPE Pathogens from Blood Using Bacterially Activated Macrophage Membraneâ€Coated Silicon Nanowires. Advanced Functional Materials, 2021, 31, 2007613.	7.8	9
347	Lubricating properties of chewing stimulated whole saliva from patients suffering from xerostomia. Clinical Oral Investigations, 2021, 25, 4459-4469.	1.4	9
348	Bacterial detachment from salivary conditioning films by dentifrice supernates. Journal of Clinical Dentistry, 2002, 13, 44-9.	0.9	9
349	Uncoupling bacterial attachment on and detachment from polydimethylsiloxane surfaces through empirical and simulation studies. Journal of Colloid and Interface Science, 2022, 622, 419-430.	5.0	9
350	Deposition of Polystyrene Particles in a Parallel Plate Flow Chamber under Attractive and Repulsive Electrostatic Conditions. Langmuir, 1999, 15, 2620-2626.	1.6	8
351	Microcalorimetric study on the influence of temperature on bacterial coaggregation. Journal of Colloid and Interface Science, 2005, 287, 461-467.	5.0	8
352	Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. Pathogens and Disease, 2016, 74, ftw029.	0.8	8
353	Polarization of Macrophages, Cellular Adhesion, and Spreading on Bacterially Contaminated Gold Nanoparticle-Coatings <i>in Vitro</i> . ACS Biomaterials Science and Engineering, 2020, 6, 933-945.	2.6	8
354	Influence of sub-inhibitory concentrations of antimicrobials on micrococcal nuclease and biofilm formation in Staphylococcus aureus. Scientific Reports, 2021, 11, 13241.	1.6	8
355	A constant depth film fermenter to grow microbial biofilms. Protocol Exchange, 0, , .	0.3	8
356	Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective. PLoS ONE, 2013, 8, e70046.	1.1	8
357	Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. Materials Today Bio, 2021, 12, 100151.	2.6	8
358	A quantitative model for the surface restructuring of repeatedly plasma treated silicone rubber. Plasmas and Polymers, 1997, 2, 41-51.	1.5	7
359	The interaction between saliva and Actinobacillus actinomycetemcomitans influenced by the zeta potential. Antonie Van Leeuwenhoek, 1998, 73, 279-288.	0.7	7
360	Caffeinated soft drinks reduce bacterial prevalence in voice prosthetic biofilms. Biofouling, 2000, 16, 69-76.	0.8	7

#	Article	IF	CITATIONS
361	A surface physicochemical rationale for calculus formation in the oral cavity. Journal of Crystal Growth, 2004, 261, 87-92.	0.7	7
362	Microbial adhesion to surfaceâ€grafted polyacrylamide brushes after longâ€ŧerm exposure to PBS and reconstituted freezeâ€dried saliva. Journal of Biomedical Materials Research - Part A, 2010, 94A, 997-1000.	2.1	7
363	Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. Cellular Microbiology, 2016, 18, 605-614.	1.1	7
364	Influence of biofilm lubricity on shearâ€induced transmission of staphylococcal biofilms from stainless steel to silicone rubber. Microbial Biotechnology, 2017, 10, 1744-1752.	2.0	7
365	Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102324.	1.7	7
366	Interfacial interactions between protective, surface-engineered shells and encapsulated bacteria with different cell surface composition. Nanoscale, 2021, 13, 7220-7233.	2.8	7
367	On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy. Materials Science and Engineering C, 2021, 131, 112526.	3.8	7
368	Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. Materials Today Bio, 2022, 15, 100293.	2.6	7
369	Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applications. , 2022, 139, 212967.		7
370	Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses. Cornea, 2013, 32, 326-331.	0.9	6
371	Quantification of the viscoelasticity of the bond of biotic and abiotic particles adhering to solid-liquid interfaces using a window-equipped quartz crystal microbalance with dissipation. Colloids and Surfaces B: Biointerfaces, 2016, 148, 255-262.	2.5	6
372	Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of <i>Staphylococcus epidermidis</i> on PDMS. Pathogens and Disease, 2020, 78, .	0.8	6
373	Encapsulation of Photothermal Nanoparticles in Stealth and pH-Responsive Micelles for Eradication of Infectious Biofilms In Vitro and In Vivo. Nanomaterials, 2021, 11, 3180.	1.9	6
374	Self-targeting of zwitterion-based platforms for nano-antimicrobials and nanocarriers. Journal of Materials Chemistry B, 2022, 10, 2316-2322.	2.9	6
375	[18] Measurements of softness of microbial cell surfaces. Methods in Enzymology, 2001, 337, 270-276.	0.4	5
376	Influence of Prophylactic Antibiotics on Tissue Integration versus Bacterial Colonization on Poly(Methyl Methacrylate). International Journal of Artificial Organs, 2012, 35, 840-846.	0.7	5
377	Surface thermodynamic homeostasis of salivary conditioning films through polar–apolar layering. Clinical Oral Investigations, 2012, 16, 109-115.	1.4	5
378	Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces. Applied and Environmental Microbiology, 2018, 84, .	1.4	5

#	ARTICLE	IF	CITATIONS
379	Micrococcal Nuclease stimulates Staphylococcus aureus Biofilm Formation in a Murine Implant Infection Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 799845.	1.8	5
380	Magnolia bark extract increases oral bacterial cell surface hydrophobicity and improves self-perceived breath freshness when added to chewing gum. Journal of Functional Foods, 2016, 25, 367-374.	1.6	4
381	Selfâ€perceived mouthfeel and physicoâ€chemical surface effects after chewing gums containing sorbitol and Magnolia bark extract. European Journal of Oral Sciences, 2017, 125, 379-384.	0.7	4
382	A Comparison of the Adaptive Response of Staphylococcus aureus vs. Streptococcus mutans and the Development of Chlorhexidine Resistance. Frontiers in Microbiology, 2022, 13, .	1.5	4
383	Bridging the Gap Between In Vitro and In Vivo Evaluation of Biomaterial-Associated Infections. , 2013, , 107-117.		3
384	Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface Coating using BioScape. , 2013, , .		3
385	Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand–Receptor Bonds. Langmuir, 2015, 31, 10443-10450.	1.6	3
386	Structured free-water clusters near lubricating surfaces are essential in water-based lubrication. Journal of the Royal Society Interface, 2016, 13, 20160554.	1.5	3
387	Perspectives on and Need to Develop New Infection Control Strategies. , 2020, , 95-105.		3
388	Synergy between "Probiotic―Carbon Quantum Dots and Ciprofloxacin in Eradicating Infectious Biofilms and Their Biosafety in Mice. Pharmaceutics, 2021, 13, 1809.	2.0	2
389	A self-cleaning surface based on UV-activatable, AgCl micropumps for bacterial killing and removal. Chemical Communications, 2022, 58, 7030-7033.	2.2	2
390	Mikrobielle WerkstoffzerstĶrung - SchadensfÄ₩e und GegenmaÄÿnahmen für Kunst- und Naturstoffe. Mikrobiologische ZerstĶrung von Silikon-Elastomeren. Materials and Corrosion - Werkstoffe Und Korrosion, 1994, 45, 170-171.	0.8	1
391	Path-dependency of the interaction between coaggregating and between non-coaggregating oral bacterial pairs—a thermodynamic approach. Colloids and Surfaces B: Biointerfaces, 2004, 37, 53-60.	2.5	1
392	Candida Biofilm Formation Assay on Essential Oil Coated Silicone Rubber. Bio-protocol, 2021, 11, e3941.	0.2	1
393	Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers. , 2000, 50, 208.		1
394	Staphylococcal Colonization of E-Beam Patterned Surfaces. Microscopy and Microanalysis, 2014, 20, 1184-1185.	0.2	0
395	Nonviral Expression of LL-37 in a Human Skin Equivalent to Prevent Infection in Skin Wounds. Human Gene Therapy, 2021, 32, 1147-1157.	1.4	0