List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7544639/publications.pdf Version: 2024-02-01



RENHIDLEE

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucumán,<br>Argentina. The Lancet Regional Health Americas, 2022, 6, 100123.                                      | 2.6  | 21        |
| 2  | Quantifying Neutralizing Antibodies in Patients with COVID-19 by a Two-Variable Generalized Additive<br>Model. MSphere, 2022, 7, e0088321.                                                              | 2.9  | 10        |
| 3  | Single-virus assay reveals membrane determinants and mechanistic features of Sendai virus binding.<br>Biophysical Journal, 2022, 121, 956-965.                                                          | 0.5  | 6         |
| 4  | Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1624-1635.              | 12.0 | 12        |
| 5  | The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.                                                              | 6.4  | 16        |
| 6  | The Impact of Evolving SARS-CoV-2 Mutations and Variants on COVID-19 Vaccines. MBio, 2022, 13, e0297921.                                                                                                | 4.1  | 117       |
| 7  | The IgA in milk induced by SARS-CoV-2 infection is comprised of mainly secretory antibody that is neutralizing and highly durable over time. PLoS ONE, 2022, 17, e0249723.                              | 2.5  | 17        |
| 8  | Classification of new morbillivirus and jeilongvirus sequences from bats sampled in Brazil and<br>Malaysia. Archives of Virology, 2022, 167, 1977-1987.                                                 | 2.1  | 11        |
| 9  | Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 2021, 184, 76-91.e13.                                                                                           | 28.9 | 418       |
| 10 | Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.                                                                                                             | 27.8 | 579       |
| 11 | Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoS Pathogens, 2021, 17, e1009161.                                                    | 4.7  | 62        |
| 12 | Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization<br>Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .                   | 4.1  | 64        |
| 13 | Reduced Nucleoprotein Availability Impairs Negative-Sense RNA Virus Replication and Promotes Host<br>Recognition. Journal of Virology, 2021, 95, .                                                      | 3.4  | 26        |
| 14 | Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic<br>phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, | 7.1  | 15        |
| 15 | Dissecting ELANE neutropenia pathogenicity by human HSC gene editing. Cell Stem Cell, 2021, 28,<br>833-845.e5.                                                                                          | 11.1 | 23        |
| 16 | Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nature Communications, 2021, 12, 4598.                                                                                     | 12.8 | 88        |
| 17 | 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.                    | 2.1  | 62        |
| 18 | Proteases and variants: context matters for SARS-CoV-2 entry assays. Current Opinion in Virology, 2021, 50, 49-58.                                                                                      | 5.4  | 23        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways<br>(NLRP12 and TAB1): implications for disease presentation across species. Emerging Microbes and<br>Infections, 2021, 10, 178-195.                 | 6.5  | 178       |
| 20 | Role of Immunoglobulin M and A Antibodies in the Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 223, 957-970.                                                                                | 4.0  | 64        |
| 21 | Detection of Antibody Responses Against SARS-CoV-2 in Plasma and Saliva From Vaccinated and<br>Infected Individuals. Frontiers in Immunology, 2021, 12, 759688.                                                                                        | 4.8  | 29        |
| 22 | Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity.<br>PLoS Pathogens, 2020, 16, e1008877.                                                                                                                | 4.7  | 3         |
| 23 | Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase. Nature<br>Microbiology, 2020, 5, 1232-1246.                                                                                                                        | 13.3 | 18        |
| 24 | Nipah@20: Lessons Learned from Another Virus with Pandemic Potential. MSphere, 2020, 5, .                                                                                                                                                              | 2.9  | 21        |
| 25 | The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. MBio, 2020, 11, .                                                                                    | 4.1  | 10        |
| 26 | 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.                                                                  | 2.1  | 184       |
| 27 | Differential Features of Fusion Activation within the Paramyxoviridae. Viruses, 2020, 12, 161.                                                                                                                                                         | 3.3  | 26        |
| 28 | A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus. Life<br>Science Alliance, 2020, 3, e201900578.                                                                                                         | 2.8  | 22        |
| 29 | Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. , 2020, 16, e1008877.                                                                                                                                 |      | 0         |
| 30 | Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. ,<br>2020, 16, e1008877.                                                                                                                              |      | 0         |
| 31 | Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. , 2020, 16, e1008877.                                                                                                                                 |      | 0         |
| 32 | Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.                                                                                                                                                 | 2.1  | 70        |
| 33 | Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.                                                                                                                                                        | 2.1  | 224       |
| 34 | A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability<br>at the fusion glycoprotein apex. Proceedings of the National Academy of Sciences of the United States<br>of America, 2019, 116, 25057-25067. | 7.1  | 53        |
| 35 | Diversity, pathogenicity and pandemic potential of Henipavirus: an interview with Benhur Lee. Future Virology, 2019, 14, 449-451.                                                                                                                      | 1.8  | 0         |
| 36 | ICTV Virus Taxonomy Profile: Paramyxoviridae. Journal of General Virology, 2019, 100, 1593-1594.                                                                                                                                                       | 2.9  | 194       |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.                                                                                                                                                                        | 2.1  | 153       |
| 38 | Problems of classification in the family Paramyxoviridae. Archives of Virology, 2018, 163, 1395-1404.                                                                                                                                                                  | 2.1  | 30        |
| 39 | Evolution of Codon Usage Bias in Henipaviruses Is Governed by Natural Selection and Is Host-Specific.<br>Viruses, 2018, 10, 604.                                                                                                                                       | 3.3  | 35        |
| 40 | IL-15 regulates susceptibility of CD4 <sup>+</sup> T cells to HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9659-E9667.                                                                                  | 7.1  | 43        |
| 41 | Greasing the receptor. Nature Microbiology, 2018, 3, 1082-1083.                                                                                                                                                                                                        | 13.3 | 2         |
| 42 | Protect NIH's DNA advisory committee. Science, 2018, 362, 409-410.                                                                                                                                                                                                     | 12.6 | 2         |
| 43 | Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Scientific Reports, 2018,<br>8, 7604.                                                                                                                                                 | 3.3  | 100       |
| 44 | Experimental Infection of Syrian Hamsters With Aerosolized Nipah Virus. Journal of Infectious<br>Diseases, 2018, 218, 1602-1610.                                                                                                                                       | 4.0  | 15        |
| 45 | The quest for good explanations. PLoS Pathogens, 2018, 14, e1006818.                                                                                                                                                                                                   | 4.7  | 0         |
| 46 | Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology, 2017, 14, 6.                                                                                                                              | 2.0  | 10        |
| 47 | Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.                                                                                                                                                                        | 2.1  | 173       |
| 48 | Zoonotic Potential of Emerging Paramyxoviruses. Advances in Virus Research, 2017, 98, 1-55.                                                                                                                                                                            | 2.1  | 84        |
| 49 | Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in<br>Aquaculture. Journal of Virology, 2017, 91, .                                                                                                                    | 3.4  | 29        |
| 50 | Efficient and Robust <i>Paramyxoviridae</i> Reverse Genetics Systems. MSphere, 2017, 2, .                                                                                                                                                                              | 2.9  | 55        |
| 51 | Analysis of Clinical HIV-1 Strains with Resistance to Maraviroc Reveals Strain-Specific Resistance<br>Mutations, Variable Degrees of Resistance, and Minimal Cross-Resistance to Other CCR5 Antagonists.<br>AIDS Research and Human Retroviruses, 2017, 33, 1220-1235. | 1.1  | 8         |
| 52 | Galectin-9 binds to O-glycans on protein disulfide isomerase. Glycobiology, 2017, 27, 878-887.                                                                                                                                                                         | 2.5  | 37        |
| 53 | ldiosyncratic MòjiÄng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses. Nature Communications, 2017, 8, 16060.                                                                                          | 12.8 | 46        |
| 54 | ICTV Virus Taxonomy Profile: Pneumoviridae. Journal of General Virology, 2017, 98, 2912-2913.                                                                                                                                                                          | 2.9  | 215       |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses,<br>2016, 8, 295.                                                                                                                                                            | 3.3  | 16        |
| 56 | Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses, 2016, 8, 109.                                                                                                                                                                                   | 3.3  | 39        |
| 57 | Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent<br>Pathway. PLoS Pathogens, 2016, 12, e1005659.                                                                                                                           | 4.7  | 31        |
| 58 | Emerging Paramyxoviruses: Receptor Tropism and Zoonotic Potential. PLoS Pathogens, 2016, 12, e1005390.                                                                                                                                                                          | 4.7  | 39        |
| 59 | ISG15 deficiency and increased viral resistance in humans but not mice. Nature Communications, 2016, 7, 11496.                                                                                                                                                                  | 12.8 | 156       |
| 60 | Quantifying the Sensitivity of HIV-1 Viral Entry to Receptor and Coreceptor Expression. Journal of Physical Chemistry B, 2016, 120, 6189-6199.                                                                                                                                  | 2.6  | 5         |
| 61 | Nipah virus matrix protein: expert hacker of cellular machines. FEBS Letters, 2016, 590, 2494-2511.                                                                                                                                                                             | 2.8  | 35        |
| 62 | Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene<br>editing. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16057.                                                                                       | 4.1  | 40        |
| 63 | Cross-reactive and cross-neutralizing activity of human mumps antibodies against a novel mumps virus from bats. Journal of Infectious Diseases, 2016, 215, jiw534.                                                                                                              | 4.0  | 7         |
| 64 | Frequency and Env determinants of HIV-1 subtype C strains from antiretroviral therapy-naive subjects that display incomplete inhibition by maraviroc. Retrovirology, 2016, 13, 74.                                                                                              | 2.0  | 4         |
| 65 | Escape From Monoclonal Antibody Neutralization Affects Henipavirus Fitness In Vitro and In Vivo.<br>Journal of Infectious Diseases, 2016, 213, 448-455.                                                                                                                         | 4.0  | 14        |
| 66 | Quantifying CD4/CCR5 Usage Efficiency of HIV-1 Env Using the Affinofile System. Methods in Molecular<br>Biology, 2016, 1354, 3-20.                                                                                                                                              | 0.9  | 3         |
| 67 | Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality. Journal of General Virology, 2016, 97, 839-843.                                                                                                     | 2.9  | 10        |
| 68 | The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε<br>Kinase-Mediated Type-I IFN Antiviral Response. PLoS Pathogens, 2016, 12, e1005880.                                                                                               | 4.7  | 81        |
| 69 | Timing of Galectin-1 Exposure Differentially Modulates Nipah Virus Entry and Syncytium Formation in<br>Endothelial Cells. Journal of Virology, 2015, 89, 2520-2529.                                                                                                             | 3.4  | 36        |
| 70 | Mutational Analysis of Measles Virus Suggests Constraints on Antigenic Variation of the Glycoproteins. Cell Reports, 2015, 11, 1331-1338.                                                                                                                                       | 6.4  | 64        |
| 71 | Galectin-1 Regulates Tissue Exit of Specific Dendritic Cell Populations. Journal of Biological Chemistry, 2015, 290, 22662-22677.                                                                                                                                               | 3.4  | 48        |
| 72 | Efficient Reverse Genetics Reveals Genetic Determinants of Budding and Fusogenic Differences<br>between Nipah and Hendra Viruses and Enables Real-Time Monitoring of Viral Spread in Small Animal<br>Models of Henipavirus Infection. Journal of Virology, 2015, 89, 1242-1253. | 3.4  | 62        |

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Broad-spectrum antivirals against viral fusion. Nature Reviews Microbiology, 2015, 13, 426-437.                                                                                                                                                                                      | 28.6 | 189       |
| 74 | Evidence for Ubiquitin-Regulated Nuclear and Subnuclear Trafficking among Paramyxovirinae Matrix<br>Proteins. PLoS Pathogens, 2015, 11, e1004739.                                                                                                                                    | 4.7  | 60        |
| 75 | Effects of singlet oxygen generated by a broad-spectrum viral fusion inhibitor on membrane<br>nanoarchitecture. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1163-1167.                                                                                            | 3.3  | 15        |
| 76 | Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2156-65.                                                                           | 7.1  | 47        |
| 77 | Dose–response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nature Communications, 2015, 6, 8443.                                                                                                                                | 12.8 | 44        |
| 78 | Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel<br>Hexamer-of-Trimers Assembly. PLoS Pathogens, 2015, 11, e1005322.                                                                                                                              | 4.7  | 59        |
| 79 | Microbeââ,¬â€œHost Interactions are Positively and Negatively Regulated by Galectinââ,¬â€œGlycan<br>Interactions. Frontiers in Immunology, 2014, 5, 284.                                                                                                                             | 4.8  | 66        |
| 80 | Evidence for henipavirus spillover into human populations in Africa. Nature Communications, 2014, 5,<br>5342.                                                                                                                                                                        | 12.8 | 143       |
| 81 | Functional Rectification of the Newly Described African Henipavirus Fusion Glycoprotein (Gh-M74a).<br>Journal of Virology, 2014, 88, 5171-5176.                                                                                                                                      | 3.4  | 14        |
| 82 | Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies. Retrovirology, 2014, 11, 48.                                                                                                               | 2.0  | 21        |
| 83 | Quantification of Entry Phenotypes of Macrophage-Tropic HIV-1 across a Wide Range of CD4 Densities.<br>Journal of Virology, 2014, 88, 1858-1869.                                                                                                                                     | 3.4  | 92        |
| 84 | The Rigid Amphipathic Fusion Inhibitor dUY11 Acts through Photosensitization of Viruses. Journal of Virology, 2014, 88, 1849-1853.                                                                                                                                                   | 3.4  | 61        |
| 85 | Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad-spectrum viral fusion inhibitors. Biochemical Journal, 2014, 459, 161-170.                                                                                                              | 3.7  | 42        |
| 86 | CRISPR/Cas9 Allows Efficient and Complete Knock-In of a Destabilization Domain-Tagged Essential<br>Protein in a Human Cell Line, Allowing Rapid Knockdown of Protein Function. PLoS ONE, 2014, 9, e95101.                                                                            | 2.5  | 38        |
| 87 | Affinofile Assay for Identifying Macrophage-Tropic HIV-1. Bio-protocol, 2014, 4, .                                                                                                                                                                                                   | 0.4  | 8         |
| 88 | A common mechanism of clinical HIV-1 resistance to the CCR5 antagonist maraviroc despite divergent resistance levels and lack of common gp120 resistance mutations. Retrovirology, 2013, 10, 43.                                                                                     | 2.0  | 57        |
| 89 | Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human<br>Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and<br>Suggests a New Strategy for Immunogen Design. Journal of Virology, 2013, 87, 7218-7233. | 3.4  | 119       |
| 90 | Transmitted/Founder and Chronic HIV-1 Envelope Proteins Are Distinguished by Differential Utilization of CCR5. Journal of Virology, 2013, 87, 2401-2411.                                                                                                                             | 3.4  | 66        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Affinofile profiling: How efficiency of CD4/CCR5 usage impacts the biological and pathogenic phenotype of HIV. Virology, 2013, 435, 81-91.                                                                                            | 2.4  | 26        |
| 92  | Interferon-Inducible Cholesterol-25-Hydroxylase Broadly Inhibits Viral Entry by Production of 25-Hydroxycholesterol. Immunity, 2013, 38, 92-105.                                                                                      | 14.3 | 554       |
| 93  | The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets. Virology, 2013, 442, 51-58.                                              | 2.4  | 20        |
| 94  | The Greasy Response to Virus Infections. Cell Host and Microbe, 2013, 13, 375-377.                                                                                                                                                    | 11.0 | 10        |
| 95  | A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion. PLoS Pathogens, 2013, 9, e1003297.                                                                                                                | 4.7  | 88        |
| 96  | Nipah Virus Envelope-Pseudotyped Lentiviruses Efficiently Target ephrinB2-Positive Stem Cell<br>Populations In Vitro and Bypass the Liver Sink When Administered In Vivo. Journal of Virology, 2013, 87,<br>4794-4794.                | 3.4  | 1         |
| 97  | HIV provides ample PAMPs for innate immune sensing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19183-19184.                                                                          | 7.1  | 6         |
| 98  | Nipah Virus Envelope-Pseudotyped Lentiviruses Efficiently Target ephrinB2-Positive Stem Cell<br>Populations <i>In Vitro</i> and Bypass the Liver Sink When Administered <i>In Vivo</i> . Journal of<br>Virology, 2013, 87, 2094-2108. | 3.4  | 27        |
| 99  | Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5. Journal of Leukocyte Biology, 2013, 93, 113-126.                                                                      | 3.3  | 36        |
| 100 | Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion<br>but Do Not Block the Interaction with the Homologous F Protein. Journal of Virology, 2013, 87,<br>3119-3129.                   | 3.4  | 18        |
| 101 | Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-NaÃ <sup>-</sup> ve Subjects with Progressive HIV-1 Subtype C Infection. PLoS ONE, 2013, 8, e65950.                                               | 2.5  | 29        |
| 102 | Cysteines in the Stalk of the Nipah Virus G Glycoprotein Are Located in a Distinct Subdomain Critical for Fusion Activation. Journal of Virology, 2012, 86, 6632-6642.                                                                | 3.4  | 49        |
| 103 | N-Glycans on the Nipah Virus Attachment Glycoprotein Modulate Fusion and Viral Entry as They<br>Protect against Antibody Neutralization. Journal of Virology, 2012, 86, 11991-12002.                                                  | 3.4  | 48        |
| 104 | Henipavirus Receptor Usage and Tropism. Current Topics in Microbiology and Immunology, 2012, 359, 59-78.                                                                                                                              | 1.1  | 50        |
| 105 | Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitinâ€related modifiers. Biology of the Cell, 2012, 104, 121-138.                                                          | 2.0  | 24        |
| 106 | The Soluble Serum Protein Gas6 Bridges Virion Envelope Phosphatidylserine to the TAM Receptor<br>Tyrosine Kinase Axl to Mediate Viral Entry. Cell Host and Microbe, 2011, 9, 286-298.                                                 | 11.0 | 165       |
| 107 | Modes of paramyxovirus fusion: a Henipavirus perspective. Trends in Microbiology, 2011, 19, 389-399.                                                                                                                                  | 7.7  | 88        |
| 108 | HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry. Retrovirology, 2011, 8, 89.                                  | 2.0  | 38        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to<br>enhance T-cell migration and HIV entry. Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 10650-10655. | 7.1  | 220       |
| 110 | Interactions of Human Complement with Virus Particles Containing the Nipah Virus Glycoproteins.<br>Journal of Virology, 2011, 85, 5940-5948.                                                                                                             | 3.4  | 20        |
| 111 | HIV-1 Escape from the CCR5 Antagonist Maraviroc Associated with an Altered and Less-Efficient<br>Mechanism of gp120-CCR5 Engagement That Attenuates Macrophage Tropism. Journal of Virology, 2011,<br>85, 4330-4342.                                     | 3.4  | 70        |
| 112 | Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Reviews in Molecular Medicine, 2011, 13, e6.                                                                                                                             | 3.9  | 41        |
| 113 | Triggering of the Newcastle Disease Virus Fusion Protein by a Chimeric Attachment Protein That Binds<br>to Nipah Virus Receptors. Journal of Biological Chemistry, 2011, 286, 17851-17860.                                                               | 3.4  | 27        |
| 114 | Containing the <i>Contagion</i> : Treating the Virus That Inspired the Film. Science Translational Medicine, 2011, 3, 105fs6.                                                                                                                            | 12.4 | 3         |
| 115 | Hendra and Nipah Infection: Pathology, Models and Potential Therapies. Infectious Disorders - Drug<br>Targets, 2011, 11, 315-336.                                                                                                                        | 0.8  | 30        |
| 116 | A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood, 2010, 115, 1534-1544.                                                                                         | 1.4  | 132       |
| 117 | Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: Efficiency of Env–CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry. Virology, 2010, 402, 135-148.                                                | 2.4  | 11        |
| 118 | An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology, 2010, 404, 269-278.                                                                                                | 2.4  | 55        |
| 119 | Positive Reinforcement for Viruses. Chemistry and Biology, 2010, 17, 1049-1051.                                                                                                                                                                          | 6.0  | 11        |
| 120 | Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. Journal of General Virology, 2010, 91, 765-772.                                                                              | 2.9  | 104       |
| 121 | A Quantitative and Kinetic Fusion Protein-Triggering Assay Can Discern Distinct Steps in the Nipah<br>Virus Membrane Fusion Cascade. Journal of Virology, 2010, 84, 8033-8041.                                                                           | 3.4  | 42        |
| 122 | HIV-1 Resistance to CCR5 Antagonists Associated with Highly Efficient Use of CCR5 and Altered Tropism on Primary CD4 <sup>+</sup> T Cells. Journal of Virology, 2010, 84, 6505-6514.                                                                     | 3.4  | 59        |
| 123 | Endothelial Galectin-1 Binds to Specific Glycans on Nipah Virus Fusion Protein and Inhibits<br>Maturation, Mobility, and Function to Block Syncytia Formation. PLoS Pathogens, 2010, 6, e1000993.                                                        | 4.7  | 62        |
| 124 | Ubiquitin-Regulated Nuclear-Cytoplasmic Trafficking of the Nipah Virus Matrix Protein Is Important<br>for Viral Budding. PLoS Pathogens, 2010, 6, e1001186.                                                                                              | 4.7  | 110       |
| 125 | Redirecting Lentiviral Vectors Pseudotyped with Sindbis Virus-Derived Envelope Proteins to DC-SIGN by<br>Modification of N-Linked Clycans of Envelope Proteins. Journal of Virology, 2010, 84, 6923-6934.                                                | 3.4  | 46        |
| 126 | A broad-spectrum antiviral targeting entry of enveloped viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3157-3162.                                                                                  | 7.1  | 214       |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A Novel Receptor-induced Activation Site in the Nipah Virus Attachment Glycoprotein (G) Involved in<br>Triggering the Fusion Glycoprotein (F). Journal of Biological Chemistry, 2009, 284, 1628-1635.                         | 3.4 | 83        |
| 128 | Galectin-1 Co-clusters CD43/CD45 on Dendritic Cells and Induces Cell Activation and Migration<br>through Syk and Protein Kinase C Signaling. Journal of Biological Chemistry, 2009, 284, 26860-26870.                         | 3.4 | 78        |
| 129 | Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). British Journal of Nutrition, 2009, 101, 482-486.                                                    | 2.3 | 109       |
| 130 | Targeted Transduction via CD4 by a Lentiviral Vector Uses a Clathrin-Mediated Entry Pathway. Journal of Virology, 2009, 83, 13026-13031.                                                                                      | 3.4 | 18        |
| 131 | Elite Suppressor–Derived HIV-1 Envelope Glycoproteins Exhibit Reduced Entry Efficiency and Kinetics.<br>PLoS Pathogens, 2009, 5, e1000377.                                                                                    | 4.7 | 93        |
| 132 | A Quantitative Affinity-Profiling System That Reveals Distinct CD4/CCR5 Usage Patterns among Human<br>Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Strains. Journal of Virology, 2009,<br>83, 11016-11026. | 3.4 | 84        |
| 133 | Adaptive Mutations in a Human Immunodeficiency Virus Type 1 Envelope Protein with a Truncated V3<br>Loop Restore Function by Improving Interactions with CD4. Journal of Virology, 2009, 83, 11005-11015.                     | 3.4 | 30        |
| 134 | Development of a neutralization assay for Nipah virus using pseudotype particles. Journal of<br>Virological Methods, 2009, 160, 1-6.                                                                                          | 2.1 | 75        |
| 135 | Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities. Virology, 2009, 387, 296-302.                                                                              | 2.4 | 39        |
| 136 | A catalytically and genetically optimized β-lactamase-matrix based assay for sensitive, specific, and<br>higher throughput analysis of native henipavirus entry characteristics. Virology Journal, 2009, 6, 119.              | 3.4 | 29        |
| 137 | MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood, 2009, 114, 404-414.                                              | 1.4 | 256       |
| 138 | Evil versus 'eph-ective' use of ephrin-B2. Nature Structural and Molecular Biology, 2008, 15, 540-542.                                                                                                                        | 8.2 | 11        |
| 139 | HIVâ€1 ssRNA triggers a vitamin Dâ€dependent antiâ€viral pathway in human monocytes. FASEB Journal, 2008, 22, 672.22.                                                                                                         | 0.5 | 0         |
| 140 | Pathobiology of henipavirus entry: insights into therapeutic strategies. Future Virology, 2007, 2, 267-282.                                                                                                                   | 1.8 | 3         |
| 141 | Polybasic KKR Motif in the Cytoplasmic Tail of Nipah Virus Fusion Protein Modulates Membrane Fusion<br>by Inside-Out Signaling. Journal of Virology, 2007, 81, 4520-4532.                                                     | 3.4 | 91        |
| 142 | Identification of the Optimal DC-SIGN Binding Site on Human Immunodeficiency Virus Type 1 gp120.<br>Journal of Virology, 2007, 81, 8325-8336.                                                                                 | 3.4 | 39        |
| 143 | Single Amino Acid Changes in the Nipah and Hendra Virus Attachment Glycoproteins Distinguish EphrinB2 from EphrinB3 Usage. Journal of Virology, 2007, 81, 10804-10814.                                                        | 3.4 | 91        |
| 144 | Efficient Construction of an Inverted Minimal H1 Promoter Driven siRNA Expression Cassette:<br>Facilitation of Promoter and siRNA Sequence Exchange. PLoS ONE, 2007, 2, e767.                                                 | 2.5 | 1         |

| #   | Article                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Envelope-Receptor Interactions in Nipah Virus Pathobiology. Annals of the New York Academy of<br>Sciences, 2007, 1102, 51-65.                                                                                                                                                                  | 3.8  | 36        |
| 146 | Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells.<br>Molecular Microbiology, 2006, 61, 324-337.                                                                                                                                                        | 2.5  | 43        |
| 147 | Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell–cell fusion. Virology, 2006, 350, 323-334.                                                                                                                                                                            | 2.4  | 33        |
| 148 | Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus. PLoS<br>Pathogens, 2006, 2, e7.                                                                                                                                                              | 4.7  | 245       |
| 149 | N-Glycans on Nipah Virus Fusion Protein Protect against Neutralization but Reduce Membrane Fusion<br>and Viral Entry. Journal of Virology, 2006, 80, 4878-4889.                                                                                                                                | 3.4  | 168       |
| 150 | Galectin-1-Matured Human Monocyte-Derived Dendritic Cells Have Enhanced Migration through<br>Extracellular Matrix. Journal of Immunology, 2006, 177, 216-226.                                                                                                                                  | 0.8  | 112       |
| 151 | Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nature Medicine, 2005, 11, 346-352.                                                                                                                                                      | 30.7 | 202       |
| 152 | EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature, 2005, 436,<br>401-405.                                                                                                                                                                               | 27.8 | 434       |
| 153 | Novel Innate Immune Functions for Galectin-1: Galectin-1 Inhibits Cell Fusion by Nipah Virus Envelope<br>Glycoproteins and Augments Dendritic Cell Secretion of Proinflammatory Cytokines. Journal of<br>Immunology, 2005, 175, 413-420.                                                       | 0.8  | 156       |
| 154 | Binding and Transfer of Human Immunodeficiency Virus by DC-SIGN+ Cells in Human Rectal Mucosa.<br>Journal of Virology, 2005, 79, 5762-5773.                                                                                                                                                    | 3.4  | 108       |
| 155 | DC-SIGN Binds to HIV-1 Glycoprotein 120 in a Distinct but Overlapping Fashion Compared with ICAM-2 and ICAM-3. Journal of Biological Chemistry, 2004, 279, 19122-19132.                                                                                                                        | 3.4  | 57        |
| 156 | Specific Interaction of Feline Immunodeficiency Virus Surface Glycoprotein with Human DC-SIGN.<br>Journal of Virology, 2004, 78, 2597-2600.                                                                                                                                                    | 3.4  | 30        |
| 157 | Sugar and Spice: Viral Envelope-DC-SIGN Interactions in HIV Pathogenesis. Current HIV Research, 2003, 1, 87-99.                                                                                                                                                                                | 0.5  | 25        |
| 158 | Human Immunodeficiency Virus Envelope (gp120) Binding to DC-SIGN and Primary Dendritic Cells Is<br>Carbohydrate Dependent but Does Not Involve 2G12 or Cyanovirin Binding Sites: Implications for<br>Structural Analyses of gp120-DC-SIGN Binding. Journal of Virology, 2002, 76, 12855-12865. | 3.4  | 90        |
| 159 | Expression of human immunodeficiency virus (HIV)–binding lectin DC-SIGNR: Consequences for HIV infection and immunity. Human Pathology, 2002, 33, 652-659.                                                                                                                                     | 2.0  | 35        |
| 160 | Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. Journal of Leukocyte Biology, 2002, 71, 445-57.                                                                                                                           | 3.3  | 311       |
| 161 | Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. Journal of Pathology, 2001, 195, 586-592.                                                                                                                                                               | 4.5  | 135       |
| 162 | CCR5 and CXCR4 expression correlated with X4 and R5 HIV-1 infection yet not sustained replication in Th1 and Th2 cells. Aids, 2001, 15, 1941-1949.                                                                                                                                             | 2.2  | 31        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2670-2675. | 7.1 | 296       |
| 164 | CD4-Independent Use of Rhesus CCR5 by Human Immunodeficiency Virus Type 2 Implicates an Electrostatic Interaction between the CCR5 N Terminus and the gp120 C4 Domain. Journal of Virology, 2001, 75, 10766-10778.                                       | 3.4 | 22        |
| 165 | cis Expression of DC-SIGN Allows for More Efficient Entry of Human and Simian Immunodeficiency<br>Viruses via CD4 and a Coreceptor. Journal of Virology, 2001, 75, 12028-12038.                                                                          | 3.4 | 170       |
| 166 | Palmitoylation of CCR5 Is Critical for Receptor Trafficking and Efficient Activation of Intracellular<br>Signaling Pathways. Journal of Biological Chemistry, 2001, 276, 23795-23804.                                                                    | 3.4 | 125       |
| 167 | DC-SIGN Interactions with Human Immunodeficiency Virus Type 1 and 2 and Simian Immunodeficiency Virus. Journal of Virology, 2001, 75, 4664-4672.                                                                                                         | 3.4 | 210       |
| 168 | IL-13 and TNF-α inhibit dual-tropic HIV-1 in primary macrophages by reduction of surface expression of CD4, chemokine receptors CCR5, CXCR4 and post-entry viral gene expression. European Journal of Immunology, 2000, 30, 1340-1349.                   | 2.9 | 50        |
| 169 | Expression and Coreceptor Function of APJ for Primate Immunodeficiency Viruses. Virology, 2000, 276, 435-444.                                                                                                                                            | 2.4 | 39        |
| 170 | The Role of HIV-Related Chemokine Receptors and Chemokines in Human Erythropoiesis in Vitro. Stem Cells, 2000, 18, 128-138.                                                                                                                              | 3.2 | 32        |
| 171 | Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood, 2000, 96, 41-49.                                                                                                                                      | 1.4 | 79        |
| 172 | Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood, 2000, 96, 1638-1645.                                                                                                                                            | 1.4 | 103       |
| 173 | Simian Immunodeficiency Virus Utilizes Human and Sooty Mangabey but Not Rhesus Macaque STRL33<br>for Efficient Entry. Journal of Virology, 2000, 74, 5075-5082.                                                                                          | 3.4 | 41        |
| 174 | Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood, 2000, 96, 41-49.                                                                                                                                      | 1.4 | 33        |
| 175 | Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood, 2000, 96, 1638-1645.                                                                                                                                            | 1.4 | 32        |
| 176 | Simian Immunodeficiency Virus Utilizes Human and Sooty Mangabey but Not Rhesus Macaque STRL33<br>for Efficient Entry. Journal of Virology, 2000, 74, 5075-5082.                                                                                          | 3.4 | 3         |
| 177 | Microglia Express CCR5, CXCR4, and CCR3, but of These, CCR5 Is the Principal Coreceptor for Human<br>Immunodeficiency Virus Type 1 Dementia Isolates. Journal of Virology, 1999, 73, 205-213.                                                            | 3.4 | 293       |
| 178 | Interferon-Î <sup>3</sup> Upregulates CCR5 Expression in Cord and Adult Blood Mononuclear Phagocytes. Blood, 1999, 93, 1137-1144.                                                                                                                        | 1.4 | 75        |
| 179 | Coreceptor/Chemokine Receptor Expression on Human Hematopoietic Cells: Biological Implications<br>for Human Immunodeficiency Virus–Type 1 Infection. Blood, 1999, 93, 1145-1156.                                                                         | 1.4 | 83        |
| 180 | CCR5 Binds Multiple CC-Chemokines: MCP-3 Acts as a Natural Antagonist. Blood, 1999, 94, 1899-1905.                                                                                                                                                       | 1.4 | 234       |

| #   | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and<br>differentially conditioned monocyte-derived macrophages. Proceedings of the National Academy of<br>Sciences of the United States of America, 1999, 96, 5215-5220.                        | 7.1 | 528       |
| 182 | Epitope Mapping of CCR5 Reveals Multiple Conformational States and Distinct but Overlapping<br>Structures Involved in Chemokine and Coreceptor Function. Journal of Biological Chemistry, 1999,<br>274, 9617-9626.                                                                    | 3.4 | 327       |
| 183 | Extracellular Cysteines of CCR5 Are Required for Chemokine Binding, but Dispensable for HIV-1<br>Coreceptor Activity. Journal of Biological Chemistry, 1999, 274, 18902-18908.                                                                                                        | 3.4 | 104       |
| 184 | CCR5 HIV-1 Coreceptor Activity. Journal of Biological Chemistry, 1999, 274, 28413-28419.                                                                                                                                                                                              | 3.4 | 18        |
| 185 | Differences in phosphorylation of the IL-2R associated JAK/STAT proteins between HTLV-I (+),<br>IL-2-independent and IL-2-dependent cell lines and uncultured leukemic cells from patients with adult<br>T-cell lymphoma/leukemia. Leukemia Research, 1999, 23, 373-384.              | 0.8 | 31        |
| 186 | A novel chemotherapeutic regimen (interferon alfa, zidovudine, and etretinate) for adult T-cell<br>lymphoma resulting in rapid tumor destruction. Journal of the American Academy of Dermatology,<br>1999, 40, 116-121.                                                               | 1.2 | 14        |
| 187 | Bone marrow CD34+ cells and megakaryoblasts secrete β-chemokines that block infection of hematopoietic cells by M-tropic R5 HIV. Journal of Clinical Investigation, 1999, 104, 1739-1749.                                                                                             | 8.2 | 51        |
| 188 | Interferon-Î <sup>3</sup> Upregulates CCR5 Expression in Cord and Adult Blood Mononuclear Phagocytes. Blood, 1999, 93, 1137-1144.                                                                                                                                                     | 1.4 | 15        |
| 189 | Coreceptor/Chemokine Receptor Expression on Human Hematopoietic Cells: Biological Implications<br>for Human Immunodeficiency Virus–Type 1 Infection. Blood, 1999, 93, 1145-1156.                                                                                                      | 1.4 | 35        |
| 190 | CCR5 Binds Multiple CC-Chemokines: MCP-3 Acts as a Natural Antagonist. Blood, 1999, 94, 1899-1905.                                                                                                                                                                                    | 1.4 | 66        |
| 191 | Use of GPR1, GPR15, and STRL33 as Coreceptors by Diverse Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Envelope Proteins. Virology, 1998, 249, 367-378.                                                                                                       | 2.4 | 135       |
| 192 | An Intricate Web: Chemokine Receptors, HIVâ $\in$ l and Hematopoiesis. Stem Cells, 1998, 16, 79-88.                                                                                                                                                                                   | 3.2 | 68        |
| 193 | Genetic Acceleration of AIDS Progression by a Promoter Variant of CCR5. , 1998, 282, 1907-1911.                                                                                                                                                                                       |     | 412       |
| 194 | An Orphan Seven-Transmembrane Domain Receptor Expressed Widely in the Brain Functions as a<br>Coreceptor for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus. Journal of<br>Virology, 1998, 72, 7934-7940.                                                      | 3.4 | 183       |
| 195 | Influence of the <i>CCR2-V64I</i> Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor<br>Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4. Journal of Virology,<br>1998, 72, 7450-7458.                                                         | 3.4 | 138       |
| 196 | CD4-independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent<br>simian immunodeficiency virus strain. Proceedings of the National Academy of Sciences of the United<br>States of America, 1997, 94, 14742-14747.                                 | 7.1 | 251       |
| 197 | Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. Journal of Virology, 1997, 71, 8999-9007.                                                                                               | 3.4 | 321       |
| 198 | Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11471-11476. | 7.1 | 71        |

2

| #   | Article                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Molecular Structure and Function of Autoantigens in Systemic Sclerosis. International Reviews of<br>Immunology, 1995, 12, 129-144. | 3.3 | 16        |
|     |                                                                                                                                    |     |           |

200 Quantification of HIV/SIV Coreceptor Expression. , 0, , 53-66.