
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7543347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulatory Mechanisms for Modulation of Signaling through the Cell Integrity Slt2-mediated Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 1511-1519.	3.4	316
2	The Global Transcriptional Response to Transient Cell Wall Damage in Saccharomyces cerevisiae and Its Regulation by the Cell Integrity Signaling Pathway. Journal of Biological Chemistry, 2004, 279, 15183-15195.	3.4	295
3	The Hog1 Mitogen-Activated Protein Kinase Is Essential in the Oxidative Stress Response and Chlamydospore Formation in Candida albicans. Eukaryotic Cell, 2003, 2, 351-361.	3.4	277
4	The MAP kinase signal transduction network in Candida albicans. Microbiology (United Kingdom), 2006, 152, 905-912.	1.8	244
5	Sequential Fractionation and Two-dimensional Gel Analysis Unravels the Complexity of the Dimorphic Fungus Candida albicans Cell Wall Proteome. Molecular and Cellular Proteomics, 2002, 1, 967-982.	3.8	228
6	A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Molecular Microbiology, 1991, 5, 2845-2854.	2.5	204
7	Non-conventional protein secretionin yeast. Trends in Microbiology, 2006, 14, 15-21.	7.7	186
8	The Sequential Activation of the Yeast HOG and SLT2 Pathways Is Required for Cell Survival to Cell Wall Stress. Molecular Biology of the Cell, 2008, 19, 1113-1124.	2.1	183
9	The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans. Eukaryotic Cell, 2006, 5, 347-358.	3.4	165
10	The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans. Molecular and Cellular Biology, 2005, 25, 10611-10627.	2.3	163
11	Proteomics-based identification of novelCandida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics, 2004, 4, 3084-3106.	2.2	150
12	MAP kinase pathways as regulators of fungal virulence. Trends in Microbiology, 2007, 15, 181-190.	7.7	145
13	The highâ€osmolarity glycerol (HOC) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast, 2010, 27, 495-502.	1.7	145
14	Applications of Flow Cytometry to Clinical Microbiology. Clinical Microbiology Reviews, 2000, 13, 167-195.	13.6	143
15	Protein phosphatases in MAPK signalling: we keep learning from yeast. Molecular Microbiology, 2005, 58, 6-16.	2.5	139
16	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138
17	The High Osmotic Response and Cell Wall Integrity Pathways Cooperate to Regulate Transcriptional Responses to Zymolyase-induced Cell Wall Stress in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 10901-10911.	3.4	138
18	A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology (United Kingdom), 1998, 144, 411-424.	1.8	134

#	Article	IF	CITATIONS
19	Virulence genes in the pathogenic yeastCandida albicans. FEMS Microbiology Reviews, 2001, 25, 245-268.	8.6	130
20	Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37Ű C. Molecular Genetics and Genomics, 1993, 241-241, 177-184.	2.4	126
21	Decoding Serological Response to Candida Cell Wall Immunome into Novel Diagnostic, Prognostic, and Therapeutic Candidates for Systemic Candidiasis by Proteomic and Bioinformatic Analyses. Molecular and Cellular Proteomics, 2006, 5, 79-96.	3.8	126
22	Integrated Proteomics and Genomics Strategies Bring New Insight into Candida albicans Response upon Macrophage Interaction. Molecular and Cellular Proteomics, 2007, 6, 460-478.	3.8	123
23	A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle. Molecular and Cellular Biology, 2000, 20, 3245-3255.	2.3	122
24	Proteomics Unravels Extracellular Vesicles as Carriers of Classical Cytoplasmic Proteins in <i>Candida albicans</i> . Journal of Proteome Research, 2015, 14, 142-153.	3.7	117
25	The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology (United Kingdom), 2005, 151, 2737-2749.	1.8	111
26	The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiology (United Kingdom), 2004, 150, 3341-3354.	1.8	107
27	Analysis of the serologic response to systemicCandida albicans infection in a murine model. Proteomics, 2001, 1, 550-559.	2.2	102
28	The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology (United Kingdom), 2005, 151, 1033-1049.	1.8	100
29	The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology (United Kingdom), 2009, 155, 413-423.	1.8	98
30	Functional analysis of HLA-DP polymorphism: a crucial role for DPbeta residues 9, 11, 35, 55, 56, 69 and 84-87 in T cell allorecognition and peptide binding. International Immunology, 2003, 15, 565-576.	4.0	93
31	PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity. Microbiology (United Kingdom), 2004, 150, 4157-4170.	1.8	89
32	Cell cycle control of septin ring dynamics in the budding yeast. Microbiology (United Kingdom), 2001, 147, 1437-1450.	1.8	89
33	Proteomic analysis of cytoplasmic and surface proteins from yeast cells, hyphae, and biofilms of <i>Candida albicans</i> . Proteomics, 2009, 9, 2230-2252.	2.2	88
34	Two-dimensional gel electrophoresis as analytical tool for identifyingCandida albicans immunogenic proteins. Electrophoresis, 1999, 20, 1001-1010.	2.4	86
35	Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochemical Journal, 2005, 390, 613-623.	3.7	84
36	Two-Dimensional analysis of proteins secreted bySaccharomyces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. , 1999, 15, 459-472.		82

#	Article	IF	CITATIONS
37	A proteomic approach for the study ofSaccharomyces cerevisiae cell wall biogenesis. Electrophoresis, 2000, 21, 3396-3410.	2.4	82
38	<i>Candida albicans</i> actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cellular Microbiology, 2009, 11, 560-589.	2.1	75
39	The latency protein LANA2 from Kaposi's sarcoma-associated herpesvirus inhibits apoptosis induced by dsRNA-activated protein kinase but not RNase L activation. Journal of General Virology, 2003, 84, 1463-1470.	2.9	70
40	Reciprocal Regulation between Slt2 MAPK and Isoforms of Msg5 Dual-specificity Protein Phosphatase Modulates the Yeast Cell Integrity Pathway. Journal of Biological Chemistry, 2004, 279, 11027-11034.	3.4	68
41	Genetic and proteomic evidences support the localization of yeast enolase in the cell surface. Proteomics, 2006, 6, S107-S118.	2.2	68
42	Induced expression of theCandida albicans multidrug resistance geneCDR1 in response to fluconazole and other antifungals. Yeast, 1998, 14, 517-526.	1.7	67
43	Cross-species identification of novelCandida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis, 2000, 21, 2651-2659.	2.4	67
44	Two-dimensional reference map of Candida albicans hyphal forms. Proteomics, 2004, 4, 374-382.	2.2	65
45	Morphogenesis beyond Cytokinetic Arrest in Saccharomyces cerevisiae. Journal of Cell Biology, 1998, 143, 1617-1634.	5.2	64
46	Analysis of <i>Candida albicans</i> plasma membrane proteome. Proteomics, 2009, 9, 4770-4786.	2.2	63
47	TheYGR194c(XKS1) gene encodes the xylulokinase from the budding yeastSaccharomyces cerevisiae. FEMS Microbiology Letters, 1998, 162, 155-160.	1.8	62
48	Low virulent strains ofCandida albicans: Unravelling the antigens for a future vaccine. Proteomics, 2004, 4, 3007-3020.	2.2	62
49	Flow cytometric analysis ofSaccharomyces cerevisiae autolytic mutants and protoplasts. Yeast, 1992, 8, 39-45.	1.7	60
50	The role of the cell wall in fungal pathogenesis. Microbial Biotechnology, 2009, 2, 308-320.	4.2	60
51	Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. Journal of Proteomics, 2010, 73, 1404-1409.	2.4	58
52	Characterization of SKM1, a Saccharomyces cerevisiae gene encoding a novel Ste20/PAK-like protein kinase. Molecular Microbiology, 1997, 23, 431-444.	2.5	54
53	Cell Wall Fractionation for Yeast and Fungal Proteomics. Methods in Molecular Biology, 2008, 425, 217-239.	0.9	54
54	The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genetics and Biology, 2010, 47, 587-601.	2.1	54

#	Article	IF	CITATIONS
55	Cell surface shaving of <i><scp>C</scp>andida albicans</i> biofilms, hyphae, and yeast form cells. Proteomics, 2012, 12, 2331-2339.	2.2	54
56	Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics, 2015, 16, 683.	2.8	54
57	Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene, 1995, 165, 115-120.	2.2	50
58	Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Molecular Biology of the Cell, 2012, 23, 2805-2817.	2.1	50
59	A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. Scientific Reports, 2017, 7, 5703.	3.3	50
60	Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiology Reviews, 2001, 25, 245-268.	8.6	49
61	Fungi sensing environmental stress. Clinical Microbiology and Infection, 2009, 15, 17-19.	6.0	47
62	Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. Journal of Proteomics, 2010, 73, 1183-1195.	2.4	46
63	Cloning ofCandida albicans SEC14 gene homologue coding for a putative essential function. Yeast, 1996, 12, 1097-1105.	1.7	45
64	Prediction of the Clinical Outcome in Invasive Candidiasis Patients Based on Molecular Fingerprints of Five Anti-Candida Antibodies in Serum. Molecular and Cellular Proteomics, 2011, 10, M110.004010.	3.8	45
65	Contribution of the antibodies response induced by a low virulentCandida albicans strain in protection against systemic candidiasis. Proteomics, 2004, 4, 1204-1215.	2.2	44
66	Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: Novel insights into diverse MAPK outcomes. BMC Genomics, 2011, 12, 390.	2.8	44
67	Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Frontiers in Microbiology, 2015, 6, 1343.	3.5	43
68	Quantitative Proteome and Acidic Subproteome Profiling of <i>Candida albicans</i> Yeast-to-Hypha Transition. Journal of Proteome Research, 2011, 10, 502-517.	3.7	41
69	Estradiol impairs the Th17 immune response against <i>Candida albicans</i> . Journal of Leukocyte Biology, 2011, 91, 159-165.	3.3	41
70	Key Words in Evolutionary Biology. , 0, , 603-610.		41
71	Characterization of domains in the yeast MAP kinase Slt2 (Mpk1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Molecular Microbiology, 1995, 17, 833-842.	2.5	40
72	Analysis of the Candida albicans proteomel. Strategies and applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 787, 101-128.	2.3	40

#	Article	IF	CITATIONS
73	Cell integrity and morphogenesis in a budding yeast septin mutant. Microbiology (United Kingdom), 1998, 144, 3463-3474.	1.8	39

Fungal cell wall biogenesis: building a dynamic interface with the environment. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

75	Proteomic analysis of detergent-resistant membranes from Candida albicans. Proteomics, 2006, 6, S74-S81.	2.2	39
76	Immunoproteomic analysis of the protective response obtained from vaccination with <i>Candida albicans ecm33</i> cell wall mutant in mice. Proteomics, 2008, 8, 2651-2664.	2.2	38
77	Serum Antibody Signature Directed against <i>Candida albicans</i> Hsp90 and Enolase Detects Invasive Candidiasis in Non-Neutropenic Patients. Journal of Proteome Research, 2014, 13, 5165-5184.	3.7	38
78	A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation. Molecular Microbiology, 1992, 6, 3567-3574.	2.5	37
79	A large-scale sonication assay for cell wall mutant analysis in yeast. , 1999, 15, 1001-1008.		37
80	Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. Journal of Cell Science, 2002, 115, 2549-58.	2.0	37
81	Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics. Journal of Proteomics, 2013, 91, 106-135.	2.4	36
82	CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 3269-3280.	1.8	35
83	Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Research, 2016, 44, gkw324.	14.5	35
84	A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affects morphogenesis and cell wall functionality. Microbiology (United Kingdom), 1998, 144, 25-36.	1.8	33
85	Characterization of Sensor-Specific Stress Response by Transcriptional Profiling of <i>wsc1</i> and <i>mid2</i> Deletion Strains and Chimeric Sensors in <i>Saccharomyces cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 679-688.	2.0	33
86	Rlm1 mediates a positive autoregulatory transcriptional feedback essential for Slt2 MAPK dependent gene expression. Journal of Cell Science, 2016, 129, 1649-60.	2.0	33
87	Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. Journal of Proteomics, 2016, 134, 144-162.	2.4	33
88	Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO Red staining. Journal of Mass Spectrometry, 2000, 35, 672-682.	1.6	32
89	Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucinâ€like protein Hkr1 but not Msb2. FEBS Letters, 2013, 587, 3675-3680.	2.8	32
90	Analysis of the Candida albicans proteomell. Protein information technology on the Net (update 2002). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 787, 129-148.	2.3	31

#	Article	IF	CITATIONS
91	Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. Journal of Antimicrobial Chemotherapy, 2010, 65, 54-62.	3.0	29
92	Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology (United Kingdom), 2002, 148, 2647-2659.	1.8	29
93	Expression andin vivo determination of firefly luciferase as gene reporter inSaccharomyces cerevisiae. Yeast, 1994, 10, 1321-1327.	1.7	28
94	Protein localisation approaches for understanding yeast cell wall biogenesis. Microscopy Research and Technique, 2000, 51, 601-612.	2.2	28
95	A proteomic approach to studySalmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: Disulfide isomerase. Proteomics, 2004, 4, 355-363.	2.2	28
96	Characterization of natural peptide ligands from HLA-DP2: new insights into HLA-DP peptide-binding motifs. Immunogenetics, 2005, 56, 754-759.	2.4	27
97	The â€~yeast cell wall chip' – a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2005, 151, 2241-2249.	1.8	27
98	Diagnosis of Invasive Candidiasis: From Gold Standard Methods to Promising Leading-edge Technologies. Current Topics in Medicinal Chemistry, 2018, 18, 1375-1392.	2.1	27
99	Yeast exo-β-glucanases can be used as efficient and readily detectable reporter genes inSaccharomyces cerevisiae. Yeast, 1994, 10, 747-756.	1.7	26
100	A Novel Connection between the Yeast Cdc42 GTPase and the Slt2-mediated Cell Integrity Pathway Identified through the Effect of Secreted Salmonella GTPase Modulators. Journal of Biological Chemistry, 2002, 277, 27094-27102.	3.4	26
101	Proteomic Profiling of Serologic Response to Candida albicans During Host-Commensal and Host-Pathogen Interactions. Methods in Molecular Biology, 2009, 470, 369-411.	0.9	26
102	Large-Scale Identification of Putative Exported Proteins in Candida albicans by Genetic Selection. Eukaryotic Cell, 2002, 1, 514-525.	3.4	25
103	A yeast strain biosensor to detect cell wall-perturbing agents. Journal of Biotechnology, 2008, 133, 311-317.	3.8	25
104	Differential protein expression of murine macrophages upon interaction with Candida albicans. Proteomics, 2006, 6, S133-S144.	2.2	24
105	Serological proteome analysis to identify systemic candidiasis patients in the intensive care unit: Analytical, diagnostic and prognostic validation of antiâ€ <i>Candida</i> enolase antibodies on quantitative clinical platforms. Proteomics - Clinical Applications, 2008, 2, 596-618.	1.6	24
106	Proteomics of RAW 264.7 macrophages upon interaction with heatâ€inactivated <i>Candida albicans</i> cells unravel an antiâ€inflammatory response. Proteomics, 2009, 9, 2995-3010.	2.2	24
107	Proteopathogen, a protein database for studying <i>Candida albicans</i> – host interaction. Proteomics, 2009, 9, 4664-4668.	2.2	24
108	Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS Journal, 2015, 282, 715-731.	4.7	24

#	Article	IF	CITATIONS
109	Enteropathogenic Escherichia coli type III effectors alter cytoskeletal function and signalling in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2005, 151, 2933-2945.	1.8	22
110	An encrusted cystitis caused by Corynebacterium urealyticum in a dog. Australian Veterinary Journal, 1995, 72, 72-73.	1.1	21
111	Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. Journal of Proteomics, 2012, 75, 4734-4746.	2.4	21
112	HLAâ€ÐPp residue 69 plays a crucial role in allorecognition. Tissue Antigens, 1998, 52, 27-36.	1.0	20
113	Identification of a nuclear export signal in the KSHV latent protein LANA2 mediating its export from the nucleus. Experimental Cell Research, 2005, 311, 96-105.	2.6	20
114	Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans. Medical Microbiology and Immunology, 2001, 189, 153-160.	4.8	19
115	A new system for the release of heterologous proteins from yeast based on mutant strains deficient in cell integrity. Journal of Biotechnology, 1994, 38, 81-88.	3.8	17
116	Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris. Molecular Genetics and Genomics, 2001, 265, 604-614.	2.1	17
117	Candida albicansBiology and Pathogenicity: Insights from Proteomics. Methods of Biochemical Analysis, 2005, , 285-330.	0.2	17
118	The role of HLA-DPβ residue 69 in the definition of antibody-binding epitopes. Human Immunology, 1995, 43, 219-226.	2.4	16
119	Choline-binding domain as a novel affinity tag for purification of fusion proteins produced inPichia pastoris. Biotechnology and Bioengineering, 2001, 74, 164-171.	3.3	16
120	Reliability of antibodies to <i>Candida</i> methionine synthase for diagnosis, prognosis and risk stratification in systemic candidiasis: A generic strategy for the prototype development phase of proteomic markers. Proteomics - Clinical Applications, 2007, 1, 1221-1242.	1.6	16
121	Slt2 MAPK association with chromatin is required for transcriptional activation of Rlm1 dependent genes upon cell wall stress. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 1029-1039.	1.9	16
122	Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Scientific Reports, 2019, 9, 3186.	3.3	16
123	The Importance of the Phagocytes' Innate Response in Resolution of the Infection Induced by a Low Virulent Candida albicans Mutant. Scandinavian Journal of Immunology, 2005, 62, 224-233.	2.7	15
124	Collection of Proteins Secreted from Yeast Protoplasts in Active Cell Wall Regeneration. Methods in Molecular Biology, 2008, 425, 241-263.	0.9	15
125	Protoplasts Fusion Hybrids from <i>Candida Albicans</i> Morphological Mutants. CRC Critical Reviews in Microbiology, 1987, 15, 79-85.	4.8	14
126	Strategies for the identification of virulence determinants in human pathogenic fungi. Current Genetics, 2003, 42, 301-312.	1.7	12

#	Article	IF	CITATIONS
127	Expression of mutations and protein release by yeast conditional autolytic mutants in batch and continuous cultures. Applied Microbiology and Biotechnology, 1993, 38, 763-769.	3.6	11
128	The deletion of six ORFs of unknown function fromSaccharomyces cerevisiae chromosome VII reveals two essential genes:YGR195w andYGR198w. , 1998, 14, 853-860.		10
129	20 MAP Kinase-Mediated Signal Transduction Pathways. Methods in Microbiology, 1998, , 375-393.	0.8	10
130	Characterization of the bipartite nuclear localization signal of protein LANA2 from Kaposi's sarcoma-associated herpesvirus. Biochemical Journal, 2003, 374, 545-550.	3.7	10
131	Contributions of Proteomics to Diagnosis, Treatment, and Prevention of Candidiasis. Methods of Biochemical Analysis, 2005, 49, 331-361.	0.2	10
132	Evolution of <i>Pseudomonas aeruginosa</i> Pathogenicity: From Acute to Chronic Infections. , 0, , 433-444.		10
133	Poacic acid, a βâ€1,3â€glucan–binding antifungal agent, inhibits cellâ€wall remodeling and activates transcriptional responses regulated by the cellâ€wall integrity and highâ€osmolarity glycerol pathways in yeast. FASEB Journal, 2021, 35, e21778.	0.5	9
134	Candida albicans biology and pathogenicity: insights from proteomics. Methods of Biochemical Analysis, 2006, 49, 285-330.	0.2	8
135	The complete sequence of a 9037 bp DNA fragment of the right arm ofSaccharomyces cerevisiae chromosome VII. Yeast, 1995, 11, 587-591.	1.7	7
136	DNA Sequence Analysis of a 23 002 bp DNA Fragment of the Right Arm ofSaccharomyces cerevisiae Chromosome VII. Yeast, 1997, 13, 357-363.	1.7	7
137	Cloning and sequence analysis of thePichia pastoris TRP1, IPP1 andHIS3 genes. , 1998, 14, 861-867.		6
138	VII. Yeast sequencing reports. The complete sequence of a 9000 bp fragment of the right arm ofSaccharomyces cerevisiae chromosome VII contains four previously unknown open reading frames. Yeast, 1995, 11, 1087-1091.	1.7	5
139	Functional characterization of human and fungal MAP kinases inSaccharomyces cerevisiae. Yeast, 2007, 24, 715-722.	1.7	5
140	Identification of the Candida albicans Immunome During Systemic Infection by Mass Spectrometry. Methods in Molecular Biology, 2009, 470, 187-235.	0.9	5
141	Release of virus-like particles by osmotic shock from a mutant strain of yeast deficient in cell integrity. Biotechnology Letters, 1995, 9, 441-444.	0.5	4
142	Cloning and sequence of a 3·835 kbp DNA fragment containing the HIS4 gene and a fragment of a PEX5-like gene from Candida albicans. Yeast, 1998, 14, 1147-1157.	1.7	4
143	Modularization and Evolvability in Antibiotic Resistance. , 2014, , 231-247.		4

#	Article	IF	CITATIONS
145	A single-copy suppressor of theSaccharomyces cerevisaelate-mitotic mutantscdc15anddbf2is encoded by theCandida albicansCDC14gene. Yeast, 2001, 18, 849-858.	1.7	3
146	Top-down characterization data on the speciation of the Candida albicans immunome in candidemia. Data in Brief, 2016, 6, 257-261.	1.0	3
147	Evolutionary Biology of Pathogenic Enterococci. , 0, , 501-521.		3
148	Effects of Antibiotic Resistance on Bacterial Fitness, Virulence, and Transmission. , 2014, , 307-318.		2
149	Evolution of Antibiotic Resistance by Hypermutation. , 2014, , 319-331.		2
150	Epidemiology and Evolution of Beta-Lactamases. , 2014, , 249-270.		2
151	Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics, 2001, 1, 550-559.	2.2	2
152	Low virulence of a morphological Candida albicans mutant. FEMS Microbiology Letters, 1999, 176, 311-319.	1.8	2
153	Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. Journal of Fungi (Basel, Switzerland), 2022, 8, 718.	3.5	2
154	Evolution of Helicobacter and Helicobacter Infections. , 2014, , 445-454.		1
155	Evolution of <i>Mycoplasma pneumoniae</i> and Mycoplasmal Infections. , 0, , 543-556.		1
156	Pathogenicity of Cryptococcus neoformans: an Evolutionary Perspective. , 2014, , 581-590.		1
157	Evolution of Genomic Islands and Evolution of Pathogenicity. , 0, , 129-137.		1
158	Genome Architecture and Evolution of Bacterial Pathogens. , 2014, , 113-127.		1
159	Human Interventions on the Evolution of Host-Bacterium Interactions. , 2014, , 51-62.		1
160	Evolution of Bacterial-Host Interactions: Virulence and the Immune Overresponse. , 2014, , 1-12.		1
161	Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids. , 2014, , 155-165.		1
162	Evolution of Haemophilus influenzae and Haemophilus Infections. , 2014, , 373-383.		1

#	Article	IF	CITATIONS
163	A Host View of the Fungal Cell Wall. , 2014, , 105-112.		1
164	Evolution of <i>Shigella</i> and Enteroinvasive <i>Escherichia coli</i> ., 0, , 421-431.		1
165	Environmental and Social Influences on Infectious Diseases. , 0, , 31-38.		1
166	Evolution of Bacillus anthracis, Causative Agent of Anthrax. , 0, , 523-533.		1
167	Emergence and Evolution of Antifungal Resistance. , 0, , 297-306.		1
168	Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity. , 0, , 197-212.		1
169	Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus. , 0, , 333-346.		1
170	Genomic View on the Evolution of Enterohemorrhagic <i>Escherichia coli</i> ., 0, , 407-419.		1
171	Low virulent strains ofCandida albicans: Unravelling the antigens for a future vaccine. , 0, , 181-201.		0
172	Proteomics-based identification of novelCandida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. , 0, , 289-324.		0
173	Mechanisms of Variation in Microbial Pathogenesis. , 2014, , 221-229.		0
174	Human Genome Diversity: a Host Genomic Perspective of Host-Pathogen Interactions and Infectious Diseases. , 0, , 39-49.		0
175	Evolution of the Normal Intestinal Microbiota and Its Pathogenic Implications. , 0, , 73-83.		0
176	Evolution of Bacterial Opportunistic Pathogens. , 0, , 85-91.		0
177	Phage-Shaping Evolution of Bacterial Pathogenicity and Resistance. , 2014, , 167-184.		0
178	Evolution of <i>Neisseria</i> and <i>Neisseria</i> Infections. , 0, , 465-474.		0
179	Collective Traits in Pathogenic Bacteria. , 0, , 13-20.		0
180	Mycobacterium tuberculosis Virulence and Evolution. , 2014, , 535-541.		0

0

#	Article	IF	CITATIONS
181	Evolution of Integrons and Evolution of Antibiotic Resistance. , 2014, , 139-154.		0
182	Spanish microbiology in an era of constant advances: a view from the battleground. International Microbiology, 2021, 24, 649-655.	2.4	0
183	Evolution of Pathogenic <i>Yersinia</i> ., 0, , 385-396.		0
184	Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in <i>Candida albicans</i> ., 0, , 213-220.		0
185	Evolution of Pathogenic Candida Species. , 0, , 565-580.		0
186	The Pneumococcus: Population Biology and Virulence. , 0, , 557-563.		0
187	Evolution of Salmonella and Salmonella Infections. , 0, , 347-359.		0
188	Aspergillus as a Human Pathogen: an Evolutionary Perspective. , 0, , 591-601.		0
189	Effects of Immune Selection on Population Structure of Bacteria. , 0, , 63-71.		0
190	Epidemiology and Evolution of Quinolone Resistance. , 0, , 271-278.		0
191	Evolution of <i>Bordetella pertussis</i> and <i>Bordetella parapertussis</i> as Deduced from Comparative Genome Analyses. , 0, , 397-405.		0
192	Evolution of <i>Legionella pneumophila</i> Icm/Dot Pathogenesis System. , 0, , 455-464.		0
193	Epidemiological and Evolutionary Dynamics of Pathogens. , 0, , 21-30.		0
194	Molecular Evolution of Chlamydiales. , 0, , 475-488.		0
195	Evolution of <i>Vibrio cholerae</i> and Cholera Epidemics. , 0, , 361-371.		0
196	Evolution of Glycopeptide Resistance. , 0, , 279-295.		0
197	Multilocus Models of Bacterial Population Genetics. , 0, , 93-104.		0

198 Evolution of Listeria monocytogenes. , 0, , 489-499.

#	Article	IF	CITATIONS
199	Emergence, Spread, and Extinction of Pathogenic Bacterial Clones. , 0, , 185-195.		0
200	Julio R. Villanueva, microbiologist, researcher, and mentor of generations of scientists. International Microbiology, 2017, 20, 151-154.	2.4	0
201	Variability of colonial morphology in benomyl-induced morphological mutants from Candida albicans. FEMS Microbiology Letters, 1987, 48, 255-259.	1.8	0