Jacob Mason Heberling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542922/publications.pdf

Version: 2024-02-01

33 papers 2,320 citations

430874 18 h-index 33 g-index

35 all docs 35 docs citations

35 times ranked 4868 citing authors

#	Article	IF	CITATIONS
1	Parasitic flowering plant collections embody the extended specimen. Methods in Ecology and Evolution, 2023, 14, 319-331.	5.2	7
2	Herbaria as Big Data Sources of Plant Traits. International Journal of Plant Sciences, 2022, 183, 87-118.	1.3	38
3	Fast but steady: An integrated leafâ€stemâ€root trait syndrome for woody forest invaders. Ecology Letters, 2022, 25, 900-912.	6.4	12
4	Data integration enables global biodiversity synthesis. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	144
5	Differential and interacting impacts of invasive plants and white-tailed deer in eastern U.S. forests. Biological Invasions, 2021, 23, 2711-2727.	2.4	29
6	Macrophenology: insights into the broadâ€scale patterns, drivers, and consequences of phenology. American Journal of Botany, 2021, 108, 2112-2126.	1.7	20
7	Using Convolutional Neural Networks to Efficiently Extract Immense Phenological Data From Community Science Images. Frontiers in Plant Science, 2021, 12, 787407.	3.6	11
8	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
9	Nonnative oldâ€field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere, 2020, 11, e03217.	2.2	12
10	Herbariumâ€based measurements reliably estimate three functional traits. American Journal of Botany, 2020, 107, 1457-1464.	1.7	21
11	Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research. BioScience, 2020, 70, 610-620.	4.9	61
12	Global Change Biology: Museum Specimens Are More Than Meet the Eye. Current Biology, 2020, 30, R1368-R1370.	3.9	5
13	Leaf functional traits at home and abroad: A community perspective of sycamore maple invasion. Forest Ecology and Management, 2020, 464, 118061.	3.2	11
14	Digitization and the Future of Natural History Collections. BioScience, 2020, 70, 243-251.	4.9	161
15	The Changing Uses of Herbarium Data in an Era of Global Change: An Overview Using Automated Content Analysis. BioScience, 2019, 69, 812-822.	4.9	70
16	Utilizing herbarium specimens to quantify historical mycorrhizal communities. Applications in Plant Sciences, 2019, 7, e01223.	2.1	17
17	Carbon gain phenologies of springâ€flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 2019, 221, 778-788.	7.3	39
18	Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 2019, 22, 616-623.	6.4	73

#	Article	IF	CITATIONS
19	<scp>iN</scp> aturalist as a tool to expand the research value of museum specimens. Applications in Plant Sciences, 2018, 6, e01193.	2.1	54
20	Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. PLoS ONE, 2018, 13, e0196746.	2.5	7
21	Biotic interchange in the Anthropocene: strong asymmetry in East Asian and eastern North American plant invasions. Global Ecology and Biogeography, 2017, 26, 447-458.	5.8	15
22	Herbarium specimens as exaptations: New uses for old collections. American Journal of Botany, 2017, 104, 963-965.	1.7	58
23	Functional shift of sycamore maple (Acer pseudoplatanus) towards greater plasticity and shade tolerance in its invasive range. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 30-40.	2.7	15
24	Herbaceous invaders in temperate forests: a systematic review of their ecology and proposed mechanisms of invasion. Biological Invasions, 2017, 19, 3079-3097.	2.4	20
25	Effects of deer on the photosynthetic performance of invasive and native forest herbs. AoB PLANTS, 2017, 9, plx011.	2.3	15
26	Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest. Ecology, 2016, 97, 874-884.	3.2	38
27	Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America. Functional Ecology, 2016, 30, 875-884.	3.6	23
28	Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest. Ecology, 2016, , .	3.2	1
29	Resourceâ€use strategies of native and invasive plants in Eastern North American forests. New Phytologist, 2013, 200, 523-533.	7.3	113
30	Scale dependence of vegetation–environment relationships: a metaâ€analysis of multivariate data. Journal of Vegetation Science, 2012, 23, 942-951.	2.2	91
31	Biogeographic constraints on the worldâ€wide leaf economics spectrum. Global Ecology and Biogeography, 2012, 21, 1137-1146.	5.8	48
32	Tolerance of two invasive thistles to repeated disturbance. Ecological Research, 2011, 26, 575-581.	1.5	15
33	The Composite Insect Trap: An Innovative Combination Trap for Biologically Diverse Sampling. PLoS ONE, 2011, 6, e21079.	2.5	36