## Javier Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542610/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Linear instability and resonance effects in large-scale opposition flow control. Journal of Fluid<br>Mechanics, 2022, 935, .                                                              | 3.4 | 1         |
| 2  | Interaction between near-wall streaks and large-scale motions in turbulent channel flows. Journal of<br>Fluid Mechanics, 2022, 940, .                                                     | 3.4 | 4         |
| 3  | Entropy, irreversibility and cascades in the inertial range of isotropic turbulence. Journal of Fluid<br>Mechanics, 2021, 915, .                                                          | 3.4 | 13        |
| 4  | An isolated logarithmic layer. Journal of Fluid Mechanics, 2021, 916, .                                                                                                                   | 3.4 | 6         |
| 5  | Collective organization and screening in two-dimensional turbulence. Physical Review Fluids, 2021, 6, .                                                                                   | 2.5 | 1         |
| 6  | Bifurcation structure of unstable periodic orbits in plane Couette flow with the Smagorinsky model.<br>Physical Review Fluids, 2021, 6, .                                                 | 2.5 | 2         |
| 7  | A low-storage method consistent with second-order statistics for time-resolved databases of<br>turbulent channel flow up to Reτ=5300. Journal of Computational Science, 2021, 56, 101476. | 2.9 | 2         |
| 8  | Computers and turbulence. European Journal of Mechanics, B/Fluids, 2020, 79, 1-11.                                                                                                        | 2.5 | 10        |
| 9  | Dipoles and streams in two-dimensional turbulence. Journal of Fluid Mechanics, 2020, 904, .                                                                                               | 3.4 | 6         |
| 10 | Effect of limited near-wall inlet data on the direct numerical simulation of turbulent channel flow.<br>Journal of Physics: Conference Series, 2020, 1522, 012019.                        | 0.4 | 1         |
| 11 | Momentum transfer by linearised eddies in turbulent channel flows. Journal of Fluid Mechanics, 2020, 895, .                                                                               | 3.4 | 13        |
| 12 | Monte Carlo science. Journal of Turbulence, 2020, 21, 544-566.                                                                                                                            | 1.4 | 10        |
| 13 | The Turbulence Cascade in Physical Space. ERCOFTAC Series, 2019, , 45-50.                                                                                                                 | 0.1 | Ο         |
| 14 | Logarithmic-layer turbulence: A view from the wall. Physical Review Fluids, 2019, 4, .                                                                                                    | 2.5 | 25        |
| 15 | Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics, 2018, 842, .                                                                                                  | 3.4 | 305       |
| 16 | Third Madrid Summer School on Turbulence. Journal of Physics: Conference Series, 2018, 1001, 011001.                                                                                      | 0.4 | 1         |
| 17 | Intense structures of different momentum fluxes in turbulent channels. Journal of Physics:<br>Conference Series, 2018, 1001, 012003.                                                      | 0.4 | 1         |
| 18 | Description and detection of burst events in turbulent flows. Journal of Physics: Conference Series, 2018, 1001, 012015.                                                                  | 0.4 | 3         |

| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Machine-aided turbulence theory. Journal of Fluid Mechanics, 2018, 854, .                                                                                                               | 3.4  | 34        |
| 20 | Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation Journal of Physics: Conference Series, 2018, 1001, 012001.   | 0.4  | 2         |
| 21 | Intense structures of different momentum fluxes in turbulent channels. Physical Review Fluids, 2018, 3, .                                                                               | 2.5  | 14        |
| 22 | Coherent structures in statistically stationary homogeneous shear turbulence. Journal of Fluid Mechanics, 2017, 816, 167-208.                                                           | 3.4  | 65        |
| 23 | Vertically localised equilibrium solutions in large-eddy simulations of homogeneous shearÂflow.<br>Journal of Fluid Mechanics, 2017, 827, 225-249.                                      | 3.4  | 10        |
| 24 | Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. Journal of Fluid Mechanics, 2017, 829, 392-419.            | 3.4  | 58        |
| 25 | The turbulent cascade in five dimensions. Science, 2017, 357, 782-784.                                                                                                                  | 12.6 | 84        |
| 26 | Towards the Direct Numerical Simulation of a Self-similar Adverse Pressure Gradient Turbulent<br>Boundary Layer Flow. , 2017, , 61-75.                                                  |      | 2         |
| 27 | Unstable periodic orbits in plane Couette flow with the Smagorinsky model. Journal of Physics:<br>Conference Series, 2016, 708, 012003.                                                 | 0.4  | 4         |
| 28 | A POD-based analysis of turbulence in the reduced nonlinear dynamics system. Journal of Physics:<br>Conference Series, 2016, 708, 012002.                                               | 0.4  | 2         |
| 29 | Second Multiflow Summer School on Turbulence. Journal of Physics: Conference Series, 2016, 708, 011001.                                                                                 | 0.4  | 0         |
| 30 | Editorial opinion: public dissemination of raw turbulence data. Journal of Physics: Conference Series, 2016, 708, 011002.                                                               | 0.4  | 2         |
| 31 | The minimal channel: a fast and direct method for characterising roughness. Journal of Physics:<br>Conference Series, 2016, 708, 012010.                                                | 0.4  | 3         |
| 32 | A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. Journal of Fluid Mechanics, 2016, 809, 290-315.                | 3.4  | 44        |
| 33 | Properties of the turbulent/non-turbulent interface in boundary layers. Journal of Fluid Mechanics, 2016, 801, 554-596.                                                                 | 3.4  | 71        |
| 34 | Homogeneous shear turbulence – bypass concept via interplay of linear transient growth and nonlinear transverse cascade. Journal of Physics: Conference Series, 2016, 708, 012001.      | 0.4  | 1         |
| 35 | Multiscale analysis of the topological invariants in the logarithmic region of turbulent channels at a friction Reynolds number of 932. Journal of Fluid Mechanics, 2016, 803, 356-394. | 3.4  | 41        |
| 36 | Optimal fluxes and Reynolds stresses. Journal of Fluid Mechanics, 2016, 809, 585-600.                                                                                                   | 3.4  | 11        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows. Physics of Fluids, 2016, 28, .                       | 4.0 | 64        |
| 38 | Cascades and wall-normal fluxes in turbulent channel flows. Journal of Fluid Mechanics, 2016, 796, 417-436.                                                                          | 3.4 | 69        |
| 39 | Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer.<br>International Journal of Heat and Fluid Flow, 2016, 61, 129-136.                | 2.4 | 42        |
| 40 | Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept. Physical Review E, 2016, 94, 023111.                                 | 2.1 | 24        |
| 41 | Coherent Structures in Wall-Bounded Turbulence. ERCOFTAC Series, 2016, , 37-46.                                                                                                      | 0.1 | 3         |
| 42 | A Marker for Studying the Turbulent Energy Cascade in Real Space. Springer Proceedings in Physics, 2016, , 27-31.                                                                    | 0.2 | 0         |
| 43 | Linearised Structures in Shear Turbulence. Procedia IUTAM, 2015, 14, 122-128.                                                                                                        | 1.2 | 0         |
| 44 | The temporal evolution of the energy flux across scales in homogeneous turbulence. Physics of Fluids, 2015, 27, .                                                                    | 4.0 | 35        |
| 45 | Numerically accurate computation of the conditional trajectories of the topological invariants in turbulent flows. Journal of Computational Physics, 2015, 295, 805-814.             | 3.8 | 10        |
| 46 | Direct detection of linearized bursts in turbulence. Physics of Fluids, 2015, 27, .                                                                                                  | 4.0 | 31        |
| 47 | Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS.<br>Journal of Physics: Conference Series, 2014, 506, 012004.                         | 0.4 | 16        |
| 48 | Scaling of pressure spectrum in turbulent boundary layers. Journal of Physics: Conference Series, 2014, 506, 012011.                                                                 | 0.4 | 0         |
| 49 | Turbulent pipe flow: Statistics, <i>Re</i> -dependence, structures and similarities with channel and boundary layer flows. Journal of Physics: Conference Series, 2014, 506, 012010. | 0.4 | 8         |
| 50 | Possible modification of the large-scale flow structures by vortical structural interactions. Journal of Physics: Conference Series, 2014, 506, 012012.                              | 0.4 | 0         |
| 51 | Numerical issues in Lagrangian tracking and topological evolution of fluid particles in wall-bounded turbulent flows. Journal of Physics: Conference Series, 2014, 506, 012003.      | 0.4 | 0         |
| 52 | Hairpin vortices in turbulent boundary layers. Journal of Physics: Conference Series, 2014, 506, 012008.                                                                             | 0.4 | 5         |
| 53 | Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+ â‰^ 2000.<br>Physics of Fluids, 2014, 26, .                                             | 4.0 | 190       |
| 54 | Time-resolved evolution of coherent structures in turbulent channels: characterization of eddiesÂand cascades. Journal of Fluid Mechanics, 2014, 759, 432-471.                       | 3.4 | 172       |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient. Journal of<br>Physics: Conference Series, 2014, 506, 012007.                  | 0.4  | 14        |
| 56 | Effect of the computational domain on direct simulations of turbulent channels up to <i>Re</i> Ï,, = 4200. Physics of Fluids, 2014, 26, .                             | 4.0  | 318       |
| 57 | Stochastic self-energy subgrid model for the large eddy simulation of turbulent channel flows.<br>Journal of Physics: Conference Series, 2014, 506, 012001.           | 0.4  | 3         |
| 58 | The attached reverse and detached forward cascades in wall-turbulent flows. Journal of Physics:<br>Conference Series, 2014, 506, 012005.                              | 0.4  | 1         |
| 59 | Scaling of velocity fluctuations in off-wall boundary conditions for turbulent flows. Journal of Physics: Conference Series, 2014, 506, 012002.                       | 0.4  | 4         |
| 60 | Characteristics of the turbulent/nonturbulent interface in boundary layers, jets and shear-free turbulence. Journal of Physics: Conference Series, 2014, 506, 012015. | 0.4  | 22        |
| 61 | Influence of solid boundary conditions on the evolution of free and wall-bounded turbulent flows.<br>Journal of Physics: Conference Series, 2014, 506, 012014.        | 0.4  | 0         |
| 62 | Granger causality in wall-bounded turbulence. Journal of Physics: Conference Series, 2014, 506,<br>012006.                                                            | 0.4  | 8         |
| 63 | Wall turbulence without walls. Journal of Fluid Mechanics, 2013, 723, 429-455.                                                                                        | 3.4  | 64        |
| 64 | Simulations of turbulent channels with prescribed velocity profiles. Journal of Fluid Mechanics, 2013, 723, 587-603.                                                  | 3.4  | 32        |
| 65 | A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers. Computers and Fluids, 2013, 80, 37-43.           | 2.5  | 60        |
| 66 | How linear is wall-bounded turbulence?. Physics of Fluids, 2013, 25, .                                                                                                | 4.0  | 86        |
| 67 | One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ â‰^ 2000. Physics of<br>Fluids, 2013, 25, .                                        | 4.0  | 311       |
| 68 | Scaling of turbulent structures in riblet channels up to <b>Re Ï,,</b> â€^ <b>â‰^ 550</b> . Physics of<br>Fluids, 2012, 24, .                                         | 4.0  | 36        |
| 69 | Direct Numerical Simulations of Wake-Perturbed Separated Boundary Layers. Journal of<br>Turbomachinery, 2012, 134, .                                                  | 1.7  | 8         |
| 70 | Cascades in Wall-Bounded Turbulence. Annual Review of Fluid Mechanics, 2012, 44, 27-45.                                                                               | 25.0 | 283       |
| 71 | The three-dimensional structure of momentum transfer in turbulent channels. Journal of Fluid Mechanics, 2012, 694, 100-130.                                           | 3.4  | 199       |
| 72 | Corrections to Taylor's Approximation fromÂComputed Turbulent Convection Velocities. ERCOFTAC Series, 2011, , 211-218.                                                | 0.1  | 0         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Time-resolved Evolution of the Wall-bounded Vorticity Cascade. Journal of Physics: Conference<br>Series, 2011, 318, 062016.                                                      | 0.4 | 5         |
| 74 | Hydrodynamic stability and breakdown of the viscous regime over riblets. Journal of Fluid Mechanics, 2011, 678, 317-347.                                                         | 3.4 | 165       |
| 75 | Drag reduction by riblets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1412-1427.                                          | 3.4 | 246       |
| 76 | Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Physics of Fluids, 2011, 23, .                                                            | 4.0 | 39        |
| 77 | Direct simulation of a zero-pressure-gradient turbulent boundary layer up<br>to <i>Re</i> <sub><i>Î,</i></sub> = 6650. Journal of Physics: Conference Series, 2011, 318, 022023. | 0.4 | 9         |
| 78 | Hybrid OpenMP-MPI Turbulent Boundary Layer Code Over 32k Cores. Lecture Notes in Computer Science, 2011, , 218-227.                                                              | 1.3 | 3         |
| 79 | Turbulent boundary layers and channels at moderate Reynolds numbers. Journal of Fluid Mechanics, 2010, 657, 335-360.                                                             | 3.4 | 266       |
| 80 | Hierarchy of minimal flow units in the logarithmic layer. Physics of Fluids, 2010, 22, .                                                                                         | 4.0 | 169       |
| 81 | Inner-Outer Interactions in Wall-Bounded Turbulence. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 3-14.                                              | 0.3 | 0         |
| 82 | A high-resolution code for turbulent boundary layers. Journal of Computational Physics, 2009, 228, 4218-4231.                                                                    | 3.8 | 225       |
| 83 | Estimation of turbulent convection velocities and corrections to Taylor's approximation. Journal of Fluid Mechanics, 2009, 640, 5-26.                                            | 3.4 | 306       |
| 84 | Wall turbulence without walls. Springer Proceedings in Physics, 2009, , 597-600.                                                                                                 | 0.2 | 1         |
| 85 | Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Physics of Fluids, 2008, 20, .                                                                     | 4.0 | 291       |
| 86 | Turbulent fluctuations above the buffer layer of wall-bounded flows. Journal of Fluid Mechanics, 2008, 611, 215-236.                                                             | 3.4 | 216       |
| 87 | Some Contributions and Challenges of Computational Turbulence Research. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2008, , 3-10.                               | 0.2 | 0         |
| 88 | Spontaneous generation of vortex crystals from forced two-dimensional homogeneous turbulence.<br>Physics of Fluids, 2007, 19, .                                                  | 4.0 | 12        |
| 89 | What are we learning from simulating wall turbulence?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 715-732.                | 3.4 | 76        |
| 90 | Vorticity organization in the outer layer of turbulent channels with disturbed walls. Journal of<br>Fluid Mechanics, 2007, 591, 145-154.                                         | 3.4 | 62        |

| #   | Article                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Effect of wall-boundary disturbances on turbulent channel flows. Journal of Fluid Mechanics, 2006, 566, 357.                                       | 3.4  | 110       |
| 92  | Self-similar vortex clusters in the turbulent logarithmic region. Journal of Fluid Mechanics, 2006, 561, 329.                                      | 3.4  | 312       |
| 93  | Linear energy amplification in turbulent channels. Journal of Fluid Mechanics, 2006, 559, 205.                                                     | 3.4  | 282       |
| 94  | Intermittency in Turbulence. , 2006, , 144-151.                                                                                                    |      | 6         |
| 95  | Scaling of the velocity fluctuations in turbulent channels up to Reï"=2003. Physics of Fluids, 2006, 18,<br>011702.                                | 4.0  | 770       |
| 96  | CLUSTERING OF INTENSE STRUCTURES IN ISOTROPIC TURBULENCE: NUMERICAL AND EXPERIMENTAL EVIDENCE. Fluid Mechanics and Its Applications, 2006, , 3-12. | 0.2  | 2         |
| 97  | THE NEAR-WALL STRUCTURES OF TURBULENT WALL FLOWS. , 2006, , 53-70.                                                                                 |      | 2         |
| 98  | The Near-Wall Structures of the Turbulent Boundary Layer. Solid Mechanics and Its Applications, 2006, , 209-220.                                   | 0.2  | 0         |
| 99  | Characterization of near-wall turbulence in terms of equilibrium and "bursting―solutions. Physics of Fluids, 2005, 17, 015105.                     | 4.0  | 94        |
| 100 | The growth of a mixing layer in a laminar channel. Journal of Fluid Mechanics, 2005, 535, 245-254.                                                 | 3.4  | 26        |
| 101 | The Contributions of A. N. Kolmogorov to the theory of turbulence. Arbor, 2004, CLXXVIII, 589-606.                                                 | 0.3  | 9         |
| 102 | Geometry and clustering of intense structures in isotropic turbulence. Journal of Fluid Mechanics, 2004, 513, 111-133.                             | 3.4  | 173       |
| 103 | The large-scale dynamics of near-wall turbulence. Journal of Fluid Mechanics, 2004, 505, 179-199.                                                  | 3.4  | 157       |
| 104 | Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 2004, 500, 135-144.                                               | 3.4  | 574       |
| 105 | TURBULENT FLOWS OVER ROUGH WALLS. Annual Review of Fluid Mechanics, 2004, 36, 173-196.                                                             | 25.0 | 1,168     |
| 106 | Preface by Javier Jiménez and the Editors. Annual Review of Fluid Mechanics, 2004, 36, .                                                           | 25.0 | 1         |
| 107 | Linear instability of a corrugated vortex sheet – a model for streak instability. Journal of Fluid<br>Mechanics, 2003, 483, 315-342.               | 3.4  | 35        |
| 108 | Computing high-Reynolds-number turbulence: will simulations ever replace experiments?. Journal of Turbulence, 2003, 4, .                           | 1.4  | 51        |

| #   | Article                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 2003, 15, L41.                                                          | 4.0 | 408       |
| 110 | Very Large Anisotropic Scales in Turbulent Wall-Bounded Flows. , 2003, , 105-112.                                                                              |     | 0         |
| 111 | COMPUTING HIGH-REYNOLDS NUMBER CHANNELS: WILL DNS EVER SUBSTITUTE EXPERIMENTS?. , 2002, , 17-27                                                                |     | 1         |
| 112 | Coherent dynamics in wall turbulence. , 2002, , 229-240.                                                                                                       |     | 0         |
| 113 | Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 2001, 442, 89-117.                                                   | 3.4 | 150       |
| 114 | Low-dimensional dynamics of a turbulent wall flow. Journal of Fluid Mechanics, 2001, 435, 81-91.                                                               | 3.4 | 60        |
| 115 | The Largest Scales in Turbulent Flow: The Structures of the Wall Layer. Lecture Notes in Physics, 2001, , 39-57.                                               | 0.7 | 0         |
| 116 | A Critical Evaluation of the Resolution Properties of B-Spline and Compact Finite Difference Methods.<br>Journal of Computational Physics, 2001, 174, 510-551. | 3.8 | 49        |
| 117 | Self-Similarity and Coherence in the Turbulent Cascade. Fluid Mechanics and Its Applications, 2001, , 57-66.                                                   | 0.2 | 2         |
| 118 | Intermittency and cascades. Journal of Fluid Mechanics, 2000, 409, 99-120.                                                                                     | 3.4 | 40        |
| 119 | Large-Eddy Simulations: Where Are We and What Can We Expect?. AIAA Journal, 2000, 38, 605-612.                                                                 | 2.6 | 66        |
| 120 | Large-eddy simulations - Where are we and what can we expect?. AIAA Journal, 2000, 38, 605-612.                                                                | 2.6 | 30        |
| 121 | The autonomous cycle of near-wall turbulence. Journal of Fluid Mechanics, 1999, 389, 335-359.                                                                  | 3.4 | 676       |
| 122 | The physics of wall turbulence. Physica A: Statistical Mechanics and Its Applications, 1999, 263, 252-262.                                                     | 2.6 | 54        |
| 123 | On the survival of strong vortex filaments in â€~model' turbulence. Journal of Fluid Mechanics, 1999,<br>394, 261-279.                                         | 3.4 | 9         |
| 124 | Dynamics of the Structures of Near Wall Turbulence. Fluid Mechanics and Its Applications, 1999, ,<br>41-49.                                                    | 0.2 | 0         |
| 125 | Small scale intermittency in turbulence. European Journal of Mechanics, B/Fluids, 1998, 17, 405-419.                                                           | 2.5 | 16        |
| 126 | On the characteristics of vortex filaments in isotropic turbulence. Journal of Fluid Mechanics, 1998, 373, 255-285.                                            | 3.4 | 181       |

| #   | Article                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Turbulent velocity fluctuations need not be Gaussian. Journal of Fluid Mechanics, 1998, 376, 139-147.                                                  | 3.4 | 56        |
| 128 | The Role of Coherent Structure Interactions in the Regeneration of Wall Turbulence. Fluid Mechanics and Its Applications, 1998, , 155-158.             | 0.2 | 7         |
| 129 | On the Generation of Intermittent Gradients in a Deterministically Forced Burgers' Equation. Fluid Mechanics and Its Applications, 1998, , 223-226.    | 0.2 | 0         |
| 130 | A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows.<br>Journal of Fluid Mechanics, 1997, 349, 149-171.      | 3.4 | 102       |
| 131 | The structure of the vortices in freely decaying two-dimensional turbulence. Journal of Fluid<br>Mechanics, 1996, 313, 209-222.                        | 3.4 | 77        |
| 132 | Algebraic probability density tails in decaying isotropic two-dimensional turbulence. Journal of Fluid<br>Mechanics, 1996, 313, 223-240.               | 3.4 | 43        |
| 133 | What do we need to substitute experiments with simulations in turbulence?. , 1996, , 1-8.                                                              |     | 0         |
| 134 | A binary tree implementation of a parallel distributed tridiagonal solver. Parallel Computing, 1995, 21, 233-241.                                      | 2.1 | 7         |
| 135 | Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in infinite domains.<br>Journal of Computational Physics, 1995, 121, 261-270. | 3.8 | 13        |
| 136 | On steady columnar vortices under local compression. Journal of Fluid Mechanics, 1995, 299, 367-388.                                                   | 3.4 | 35        |
| 137 | Statistical Properties of Decaying Two-Dimensional Turbulence. Fluid Mechanics and Its Applications, 1995, , 11-15.                                    | 0.2 | 1         |
| 138 | A Preliminary Study on the Formation of Elongated Vortices in Turbulence. Fluid Mechanics and Its<br>Applications, 1995, , 519-523.                    | 0.2 | 0         |
| 139 | On the generation of turbulent wall friction. Physics of Fluids, 1994, 6, 634-641.                                                                     | 4.0 | 131       |
| 140 | On the structure and control of near wall turbulence. Physics of Fluids, 1994, 6, 944-953.                                                             | 4.0 | 76        |
| 141 | Hyperviscous vortices. Journal of Fluid Mechanics, 1994, 279, 169-176.                                                                                 | 3.4 | 39        |
| 142 | Solitary waves on a vorticity layer. Journal of Fluid Mechanics, 1994, 264, 303-319.                                                                   | 3.4 | 0         |
| 143 | The structure of intense vorticity in isotropic turbulence. Journal of Fluid Mechanics, 1993, 255, 65.                                                 | 3.4 | 883       |
| 144 | The rollup of a vortex layer near a wall. Journal of Fluid Mechanics, 1993, 248, 297-313.                                                              | 3.4 | 37        |

| #   | Article                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Small Scale Vortices in Turbulent Flows. , 1993, , 95-110.                                                                                  |      | 4         |
| 146 | Kinematic alignment effects in turbulent flows. Physics of Fluids A, Fluid Dynamics, 1992, 4, 652-654.                                      | 1.6  | 116       |
| 147 | The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 1991, 225, 213-240.                                              | 3.4  | 892       |
| 148 | Fractal interfaces and product generation in the twoâ€dimensional mixing layer. Physics of Fluids A,<br>Fluid Dynamics, 1991, 3, 1261-1268. | 1.6  | 9         |
| 149 | The Role of Computation in Transition Research. , 1991, , 170-181.                                                                          |      | 0         |
| 150 | Transition to turbulence in two-dimensional Poiseuille flow. Journal of Fluid Mechanics, 1990, 218,<br>265.                                 | 3.4  | 85        |
| 151 | Boltzmann Approach to Lattice Gas Simulations. Europhysics Letters, 1989, 9, 663-668.                                                       | 2.0  | 713       |
| 152 | Linear stability of a non-symmetric, inviscid, Kármán street of small uniform vortices. Journal of Fluid<br>Mechanics, 1988, 189, 337-348.  | 3.4  | 15        |
| 153 | Ejection mechanisms in the sublayer of a turbulent channel. Physics of Fluids, 1988, 31, 1311.                                              | 1.4  | 36        |
| 154 | Bifurcations and bursting in two-dimensional Poiseuille flow. Physics of Fluids, 1987, 30, 3644.                                            | 1.4  | 27        |
| 155 | On the performance of particle tracking. Journal of Fluid Mechanics, 1987, 185, 447-468.                                                    | 3.4  | 185       |
| 156 | A boundary-layer analysis of Rayleigh-Bénard convection at large Rayleigh number. Journal of Fluid<br>Mechanics, 1987, 178, 53-71.          | 3.4  | 25        |
| 157 | On the linear stability of the inviscid Kármán vortex street. Journal of Fluid Mechanics, 1987, 178,<br>177-194.                            | 3.4  | 30        |
| 158 | A thinning algorithm based on contours. Computer Vision, Graphics, and Image Processing, 1987, 39, 186-201.                                 | 1.0  | 53        |
| 159 | Approximate reconstruction of randomly sampled signals. Signal Processing, 1987, 12, 153-168.                                               | 3.7  | 7         |
| 160 | Computer graphic display method for visualizing three-dimensional biological structures. Science, 1986, 232, 1113-1115.                     | 12.6 | 78        |
| 161 | A perspective view of the plane mixing layer. Journal of Fluid Mechanics, 1985, 152, 125-143.                                               | 3.4  | 106       |
| 162 | A spanwise structure in the plane shear layer. Journal of Fluid Mechanics, 1983, 132, 319-336.                                              | 3.4  | 166       |

| #   | Article                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Computer analysis of a high-speed film of the plane turbulent mixing layer. Journal of Fluid<br>Mechanics, 1982, 119, 323-345. | 3.4 | 130       |
| 164 | Some Experiments in Image Vectorization. IBM Journal of Research and Development, 1982, 26, 724-734.                           | 3.1 | 37        |
| 165 | Hot-film sensors calibration drift in water. Journal of Physics E: Scientific Instruments, 1981, 14, 569-572.                  | 0.7 | 4         |
| 166 | Shear layer models and computer analysis of data. , 1981, , 41-61.                                                             |     | 3         |
| 167 | On the visual growth of a turbulent mixing layer. Journal of Fluid Mechanics, 1980, 96, 447-460.                               | 3.4 | 35        |
| 168 | Stability of a pair of co-rotating vortices. Physics of Fluids, 1975, 18, 1580.                                                | 1.4 | 65        |
| 169 | Nonlinear gas oscillations in pipes. Part 1. Theory. Journal of Fluid Mechanics, 1973, 59, 23-46.                              | 3.4 | 46        |
| 170 | Dynamics of Wall-Bounded Turbulence. , 0, , 221-268.                                                                           |     | 5         |