Christophe Dumouchel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of extensional properties during free jet breakup. Experiments in Fluids, 2020, 61, 1.	2.4	3
2	Analysis of a textural atomization process. Experiments in Fluids, 2019, 60, 1.	2.4	2
3	Analysis of ligamentary atomization of highly perturbed liquid sheets. International Journal of Multiphase Flow, 2018, 107, 156-167.	3.4	5
4	Multi-scale analysis of a viscoelastic liquid jet. Journal of Non-Newtonian Fluid Mechanics, 2017, 245, 1-10.	2.4	12
5	Multi-scale analysis of simulated capillary instability. International Journal of Multiphase Flow, 2017, 92, 181-192.	3.4	9
6	Liquid Atomization and Spray: A Multi-Scale Description. , 2017, , .		2
7	Towards an interpretation of the scale diffusivity in liquid atomization process: An experimental approach. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 612-624.	2.6	5
8	Multi-scale analysis of atomizing liquid ligaments. International Journal of Multiphase Flow, 2015, 73, 251-263.	3.4	17
9	LASER-DIFFRACTION MEASUREMENT OF NONSPHERICAL DROP SPRAYS. Atomization and Sprays, 2014, 24, 223-249.	0.8	5
10	Cavitation and primary atomization in real injectors at low injection pressure condition. Experiments in Fluids, 2013, 54, 1.	2.4	8
11	NUMERICAL SIMULATION OF PRIMARY ATOMIZATION: INTERACTION WITH EXPERIMENTAL ANALYSIS. Atomization and Sprays, 2013, 23, 1103-1138.	0.8	1
12	On the adequacy between the laser diffraction diameter distribution and the 3-parameter Generalized-Gamma function. Chemical Engineering Science, 2012, 79, 103-111.	3.8	3
13	Experimental Determination of Liquid Spray Drop Morphology Qualitative Information from Laserâ€Diffraction Measurements. Particle and Particle Systems Characterization, 2010, 27, 76-88.	2.3	2
14	Deconvolution with Maximum Entropy Solution to Determine Local Extinction Coefficient and Local Volume Concentration Values from Laser Diffraction Data. Particle and Particle Systems Characterization, 2009, 26, 187-198.	2.3	0
15	Application of the scale entropy diffusion model to describe a liquid atomization process. International Journal of Multiphase Flow, 2009, 35, 952-962.	3.4	15
16	The Maximum Entropy Formalism and the Prediction of Liquid Spray Drop-Size Distribution. Entropy, 2009, 11, 713-747.	2.2	35
17	On the experimental investigation on primary atomization of liquid streams. Experiments in Fluids, 2008, 45, 371-422.	2.4	300
18	On the Capability of the Generalized Gamma Function to Represent Spray Drop‧ize Distribution. Particle and Particle Systems Characterization, 2008, 25, 154-167	2.3	13

#	Article	IF	CITATIONS
19	ANALYSIS OF TWO-DIMENSIONAL LIQUID SPRAY IMAGES: THE SURFACE-BASED SCALE DISTRIBUTION. Journal of Flow Visualization and Image Processing, 2008, 15, 59-83.	0.5	8
20	Application of the maximum entropy technique in tomographic reconstruction from laser diffraction data to determine local spray drop size distribution. Experiments in Fluids, 2007, 42, 471-481.	2.4	4
21	Fractal analysis of atomizing liquid flows. International Journal of Multiphase Flow, 2007, 33, 1023-1044.	3.4	33
22	A New Formulation of the Maximum Entropy Formalism to Model Liquid Spray Drop-Size Distribution. Particle and Particle Systems Characterization, 2006, 23, 468-479.	2.3	35
23	On the role of the liquid flow characteristics on low-Weber-number atomization processes. Experiments in Fluids, 2005, 38, 637-647.	2.4	19
24	Experimental analysis of liquid–gas interface at low Weber number: interface length and fractal dimension. Experiments in Fluids, 2005, 39, 651-666.	2.4	24
25	Application of the Maximum Entropy Formalism on Sprays Produced by Ultrasonic Atomizers. Particle and Particle Systems Characterization, 2003, 20, 150-161.	2.3	16
26	Investigation on the Drop Size Distribution of SpraysProduced by a High-Pressure Swirl Injector. Measurementsand Application of the Maximum Entropy Formalism. Particle and Particle Systems Characterization, 2001, 18, 33-49.	2.3	18
27	EXPERIMENTAL INVESTIGATION OF THE DROP SIZE DISTRIBUTION OF SPRAYS PRODUCED BY A LOWVELOCITY NEWTONIAN CYLINDRICAL LIQUID JET. Atomization and Sprays, 2001, 11, 227-254.	0.8	6
28	Use of the Maximum Entropy Formalism to Determine Drop Size Distribution Characteristics. Particle and Particle Systems Characterization, 1999, 16, 177-184.	2.3	20
29	Development of a Three-parameter Volume-based Spray Drop Size Distribution through the Application of the Maximum Entropy Formalism. Particle and Particle Systems Characterization, 1999, 16, 220-228.	2.3	11
30	Experimental and Theoretical Study of Sprays Produced by Ultrasonic Atomisers. Particle and Particle Systems Characterization, 1997, 14, 93-101.	2.3	10
31	THE STABILITY CURVE OF NEWTONIAN LIQUID JETS. Atomization and Sprays, 1996, 6, 623-647.	0.8	43
32	COUPLING OF CLASSICAL LINEAR THEORY AND MAXIMUM ENTROPY FORMALISM FOR PREDICTION OF DROP SIZE DISTRIBUTION IN SPRAYS: APPLICATION TO PRESSURE-SWIRL ATOMIZERS. Atomization and Sprays, 1996, 6, 601-622.	0.8	49