

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7542001/publications.pdf Version: 2024-02-01

Vumli

#	Article	IF	CITATIONS
1	Exploration of solvent casting for designing engineered microstructures for biomedical and functional applications. Journal of the American Ceramic Society, 2022, 105, 1864-1881.	3.8	3
2	An integrative cellulose-based composite material with controllable structure and properties for solar-driven water evaporation. Cellulose, 2022, 29, 2461-2477.	4.9	10
3	Correlation between the powder characteristics and particle morphology of microcrystalline cellulose (MCC) and its tablet application performance. Powder Technology, 2022, 399, 117194.	4.2	15
4	Wheat straw components fractionation, with efficient delignification, by hydrothermal treatment followed by facilitated ethanol extraction. Bioresource Technology, 2020, 316, 123882.	9.6	13
5	On the Design of Novel Biofoams Using Lignin, Wheat Straw, and Sugar Beet Pulp as Precursor Material. ACS Omega, 2020, 5, 17078-17089.	3.5	13
6	Using fractal dimension and shape factors to characterize the microcrystalline cellulose (MCC) particle morphology and powder flowability. Powder Technology, 2020, 364, 241-250.	4.2	25
7	On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting. Journal of Materials Engineering and Performance, 2020, 29, 5542-5556.	2.5	18
8	Effects of acid hydrolysis waste liquid recycle on preparation of microcrystalline cellulose. Green Processing and Synthesis, 2019, 8, 348-354.	3.4	4
9	Morphological changes of lignin during separation of wheat straw components by the hydrothermal-ethanol method. Bioresource Technology, 2019, 294, 122157.	9.6	26
10	Control of structure and properties of cellulose nanofibrils (CNF)-based foam materials by using ethanol additives prior to freeze-drying. Wood Science and Technology, 2019, 53, 837-854.	3.2	3
11	Foam materials with controllable pore structure prepared from nanofibrillated cellulose with addition of alcohols. Industrial Crops and Products, 2018, 125, 314-322.	5.2	12
12	Pore structure and pertinent physical properties of nanofibrillated cellulose (NFC)-based foam materials. Carbohydrate Polymers, 2018, 201, 141-150.	10.2	15
13	Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 2017, 77, 1179-1205.	16.4	85
14	Fungal Biotransformation of Insoluble Kraft Lignin into a Water Soluble Polymer. Industrial & Engineering Chemistry Research, 2017, 56, 6103-6113.	3.7	20
15	Production of lignin based insoluble polymers (anionic hydrogels) by C. versicolor. Scientific Reports, 2017, 7, 17507.	3.3	16
16	Metals in the Environment: Toxic Metals Removal. Bioinorganic Chemistry and Applications, 2017, 2017, 1-2.	4.1	29
17	Synthesis and Tribological Behavior of Ultra High Molecular Weight Polyethylene (UHMWPE)-Lignin Composites. Lubricants, 2016, 4, 31.	2.9	2
18	Biodegradation of lignin by fungi, bacteria and laccases. Bioresource Technology, 2016, 220, 414-424.	9.6	90

Yun Ji

#	Article	IF	CITATIONS
19	Determining the kinetics of sunflower hulls using dilute acid pretreatment in the production of xylose and furfural. Green Processing and Synthesis, 2014, 3, .	3.4	4
20	Kenaf biomass biodecomposition by basidiomycetes and actinobacteria in submerged fermentation for production of carbohydrates and phenolic compounds. Bioresource Technology, 2014, 173, 352-360.	9.6	20
21	Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Industrial Crops and Products, 2013, 49, 598-609.	5.2	49
22	Recent Development in Chemical Depolymerization of Lignin: A Review. Hindawi Journal of Chemistry, 2013, 2013, 1-9.	1.6	189
23	Pretreatment and Enzymatic Hydrolysis of Kenaf as a Potential Source for Lignocellulosic Biofuel and Green Chemicals. Current Organic Chemistry, 2013, 17, 1624-1632.	1.6	5